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The focus of this research project was:to develop a photometric. imaging’system
for detecting bruises on Red Delicious-and Golden Delicious apples. As part” .

of the project,hah§§nvestigatiop to:characterize theuphygjcgliaqy‘phgmléa&ggﬁj

alterations that occur when an apple-is damaged was.undertaken::. Project "7’
objectives were 1)*to characterize the anatomical and, chemicallchanges’ for’ b
bruising, shape, russetting,”and external insect. damage and'hq&%theSe.changes

vary with time onRed Delicious,:Golden Delicious, and ﬁmpige\aﬁble§.“2) to"’
define the chemical changes for the previously specified apple varieties,’and
3) to evaluate the selected photometric sensor and . image processing techniques
for determining the feasibilityiof distinguishing good tissue from each’defect

and each defect-type from each other.. . g v pgEres ]

: S A .
Apple tissue undergoes both chemical and anatomical alterations when cells are
damaged. Studies indicated. that COp production increased while ethylene
production decreased for bruised tissue regions. Membrane permeability
increased for bruised tissue and was proportional to the severity of the
bruised region. This change in the permeability resulted in an increase in
the electrical conductance for bruised apple tissue. .

There are limitations of applying spectrophotometric results into a machine
vision inspection system.. Although specific wavelengths for increasing the
contrast between bruised and nonbruised were identified, the contrast between
bruised and nonbruised regions actually decreased when the specific
wavelengths were implemented in a machine vision system. Bruise detection
using near-infrared reflectance varied with time. . For a 24 hour bruise, the
energy reflected from a bruised region was. less than the energy reflected from
a nonbruised region. However, the energy .reflected from a bruised region
exceeded that from a nonbruised site for older bruises. . Red, green, and hue
were selected as the best features for discriminating bruises on stored Golden
pelicious apples. These three features did not exhibit an increase ‘in
reflectance for older bruises that was ‘evident with near-infrared reflectance.
Three algorithms for tracing the boundary of pixel clusters were evaluated for
their accuracy from measuring the area and efficiency in computation. -The -

CLUSTER and BOUNDARY algorithms were not significantly different in o
performance or speed, while CENTRO|D was slowest. ... . = : "~ e e
. j 1 i ; -
i ‘ . N H G
! "‘:‘ i :" H l o :



INTRODUCTION

Commercial apple production has Increased over the past 25 years despite a
decline in the number of acres in production. This continued increase will
force the grower to adopt new production practices, because the labor force
for harvesting and handling the fruit is declining. Unless the grower can -
harvest and process the fruit before its quality deteriorates, the fruit will
be worthless.

Fruit quality depends on several characteristics that indicate the -
acceptability of the product to the consumer. For. apples,.grade-is determined
by maturity, shape, disease, damage, and color. The complex procedure by
which ‘apples are graded is-described in the standards adopted by federal , °
government agencies. A satisfactoryimethod for automatically segregating,. ,
blemished apples is lacking and has led to'a. labor.intensive,process for apple
inspection. The failure of fully automating apple. inspection has led to the’ .
following effects on the apple industry 'in'both the United States and lsrael:”
Lt R A DV DA . Cow!

}orast,

1. Twenty-five years of mechanizedAharvesting resea}ch‘has'gst p;bvéd
feasible for fresh market apples because of the. need for a rapid automated
sorting system to remove damaged fruit (Millier et al., 1983, 1984; Tenggg

et al., 1973; Peterson, et al., 1985).

2. Although present technology has automated color and weight sorting,
removal of damaged and diseased fruit still remains a labor intensive
process.

3. Human failure and fatigue during inspection causes error in equity of
payments to producers and variable market quality for the consumer
(Rehkugler, 1986). Studies have shown variability in the implementation
of the grading standards between packing houses and within a packing house
(Stevens and Gale, 1970). - S agee

4. Complete sorting of stored apples to eliminate storing damaged fruit that
decays and causes spoilage of neighboring good fruit is not fully
implemented because the amount of labor necessary to inspect the volume
of fruit during the short harvest season cannot be economically
justified. However, high speed automatic sorting could make this
procedqre“fg?sible. : ,

There have been numerous attempts to identify features that could be used to
distinguish blemished from unblemished fruit. Many parameters have been
identified; however, none have been successfully incorporated into a grading
system. Implementation of a successful automatic grading mechanism requires a
device that can sense and differentiate many types of fruit characteristics at
a high rate of speed and accuracy. .o . '

OBJECTIVES

The original objective of this research project was to define a photometric
measurement technique for detecting different defects on apples and
investigate how these techniques could be applied in a prototype grading
system. The specific objectives were:
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1. Characterize the 5natomiga|‘hnqﬁéhpmical;éhanges‘forﬂbrulsing.:shape;aaxzi;
russetting, and external insect damage and how ithese changes vary with ;-=c1.
time on Red Delicious, Emg“iﬁrq,v{?ﬁq .GoI’den ‘Delicious apples:i i.co ,
o e T T ST w weded) ThAT e fL

2. Define thefr§|§tIgﬁsh[p*thﬁgenﬁthG'phdtqmqtrlcimeasurementAand the . iorvs:
anatomical ahdL¢hémlca!}chédbéé}!o??thé?prevléuéIyﬁspeélfled:applemmg@ﬁbaag
varieti68. Fimaad ""’% 3 ""nf:" 333:'; 33"}‘:} 315:; :&i':‘} q?&?!-\‘i}-mé 1 fg::% i“’?‘:"{ﬁiﬁ‘ ",:i‘; “{%;
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3. Evaluate the sgjectpd‘photqmetrlq gensor ‘and image processing techniques
“ for determining the feasibility of”dlsgI@gﬂléhingrgood?tissuesfrom each

 defect . type and each defect type from each otherz®vtad 3 . .15

' - 13‘:f?1;§5;;f? R RS AR - L e "

During the course of ‘the'project, theobjectives were modified.ziThe type 0
defects and the cultivars of apples were reduced. Characterization:of bruise
damage was investigated only on Red Delicious‘and"Golden Delicious apples..
This limitation focused, the_ research on the main fresh market cultivars.
Quality factors such as shape; russetting; and insect damage were omitted;:
however, time and storage effects on the dissipation of watercore and
development of internal browning were investigated. ‘ This change was = g
made ,because earlier time studies indicated that the light transmission
properties of watercored fruit changed with time and storage conditions. "¢
Lacking the input from a postharvest physiologist at the Appalachian Fruit
Research Station, no progress was made on evaluating the relationship between
the photometric measurement and the anatomical and chemical changes of the

various defects.

e,

Loy

ﬁESEARCH ACTIVITIES AND RESULTS
Physiglggiggl Changes for Alternative Detection

Bruising of apples occurs by compression and impact ‘damage during handling,
packaging and transport operations. The result is a loss of prime quality and
reduced grades of the fruit on the market. There is an increasing demand -to
grade fruits for quality and appearance and at present, most of the inspection
is done manually. An objective, mechanized technique for ‘produce inspection
is needed by the fruit and vegetable sorting, grading and packing industries.
various automatic techniques that have been investigated are based on
detection by computer vision using near-infrared (Taylor and Rehkugler, 1985),
x-rays (Johnson, 1985), NMR (Chen et al., 1988)-and even computer tomography
for internal quality (Moroshima et al., 1987). All these'methods are aimed at
visualizing the defective tissue and thereafter "interpreting and translating
the vision to a data processingjsystem,-which; of necessity has to be very -
rapid. One of the difficulties with these methods for computer imaging of . -.
bruised tissue is, that a bruise generally becomes visible to the naked eye
and to the apparatus, some time after the damage has occurred. However, prior
to the change in color, a number of physiological ‘and biochemical alterations -
occur, leading among other things, to the change in color.i" The object of .this
study was to characterize some of these changes, with the idea’that they might
be used as attributes to identify damaged tissue, even atvan early stage after
its induction.

1y
iy
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Selected damagé—freé fruits of uniform~sizeﬁffom two cultivars, Golden .
Delicious and Starking Delicious were harvested at three’ stages of maturity.
Fruit samples were spbjecﬁed to measured degrees of impact force, either after
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harvest or after various storage periods. The different degrees of impact
force were .achieved by dropping a 4 cm diameter metal disc, weighing 364 g, -’
from different heights onto the exposed cheek of each fruit.” The impact of

the disc on the fruit caused a regular circular bruise, the size of which was
proportional to the impact force.. Physiological responses were monitored at
predetermined times immediately following treatment or after cold storage in +~

Rir or controlled atmosphere (CA: 5% COp, 2% Op). The parameters measured'
vere. o T e

’ A A TR RN cnt P
a) Changes in~co]o;'measuredAby;rqflectancq from bruised tissue, using-
a Minolta chromameter CR-200,, ° .. = 7" T e
b) Respiration and ethylene evolution by whole fruits and from excised
* bruised tissue compared.to,excised healthy tissue from the same
Fruits. © somio e gnmees mrber o iee o O BTN
c) - Electrolyte -leakage from bruised tissue as a measure of membrane ' *:
damagg.u_q-x»» o . - . Lo ii_ft:.ﬂ% f:i'ﬂfii;}'t :f‘..,
d)  Conductivity of bruised tissue compared to healthy areas of the 1°
-game fruits. , - . ’ ji; i by 2
e) Acidity of bruised versus healthy 'tissue, by titration of extracted

juice.. < ¢ c . o
f) Changes in the activity of the ethylens forming enzyme (EFE) in
vivo. - - :

a) Bruise detection by tristimulus color measurement

Differential color estimations of bruised vs. healthy tisgue (8E",p,), based on
Commission lnternaéional de |'Eclairage (CIE, 1986) L a'b (CIELAE? values,
correlated well (R¢ = 0.57) for green Golden Delicious apples when the total

color difference (AE*ab) was calculated as follows:

BE™,p = (8L)2 + (82")2 + (ab")?

As fruit matured, the quantitative color differences diminished, even though
the bruises remained visible. A similar situation was observed on bruised
fruit that was examined after storage. The above correlation did not hold
true for bruises on the red cheeks of Starking Delicious apples. '

-

b) Respiration and ethylene evolution

The respiratory activity and ethylene evolution by whole fruits immediately
after impact bruising were essentially .the same as reported previously by
other investigators (Robitaille and Janick, 1973; Klein, 1983), for both
freshly harvested fruits and for post-storage treated fruits (Table 1).

The enhancement of CO, production was generally less pronounced with the 2
cvs. studied here, bu% the inhibition of ethylene evolution was much the
same. However, neither respiration rate nor ethylene evolution from
stored-bruised fruit showed any consistent significant deviation from those of
undamaged fruit, after the removal of the fruit from air or CA storage.-

Comparisons drawn between the COp production rates of excised bruised and
healthy tissues from the same fruits showed no effect on bruising at any
time.  Moreover, no differences could be found in the titratable acid content
of bruised and healthy tissue. The enhanced malate decarboxylation effect of
bruising, proposed by Klein (1983) to explain the increased COy production

4
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Table 1. CO, and CoHy production by discs of bruised'apple tissue’(expressed
as % of production by non-bruised tissue discs) excised from fruits at
different stages of the climacteric after Impact bruising fromdifferent 31,
heights. - C s AT B AR P N o w0
o, Lo Yz Baaabdiy o Dae Aol N YA S FEE T 53;_,;:»
0 TE reohisd st g AESUTovy vas bl o aolrolber o i
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' - roo v v TTRBRAB WYL he D RO mBoly ibngs o agben B
A g Z ; ;j, v .;’ < {’.,' ’ PR *:1 .’».»‘,.’f; Y 'i& J{{?(}»;_?z,‘gl‘ﬁ Qeii ’:‘l_;*
Golden : Valley'::;;¢28/8/90 :7 1007 2 f114 ey n%7135?:{.-§b%g61i?é@37
Delicious: e ST L e 1 116 - 1@ S sl - pTaB o,
: : : 20 122 113 86 : - 40 . .28

/990 o 10+ M1 121 710 : s2seiiszls 32"

- S+ 15 : 18 92 - :71, 3, -

iy, 5200000 06 104 79 :30 =:=i32%; -37
AR R T R R “hran .

T80’ 10 i - -897793 1 - +. 65, 135,

TSR 99 i - 11177 95 7 rovet (38,33

EATECEEN

Starking : Plateau : "2/20/90 : 10 - 125 89 : .- 69, 77
Delicious: = 200 - 97 9 :° - .59 62
a - Production 4h after impact - '

Pre - preclimacteric fruit '
C1 - at climacteric peak

ost - postclimacteric fruit

Differs from control at p=0.05
from damaged fruits, does not appear to apply for Golden Delicious apples. ,

This might be due to the low level of acidity in Golden Delicious as compared
to Mcintosh. 1t would therefore seem that increased COp production does not .

necessarily accompany bruising of apples.

Y
Y o

-

On the other hand, when comparisons were drawn with regard to ethylene
evolution, consistent inhibition was observed for at least 6 hours after . .
impact. The extent of inhibition was relative to the severity of ‘the bruise
at 2 hours after impact, but the differences diminished somewhat thereafter.
At 24 hours after excision, when wound ethylene was no longer being produced,
only the more severely bruised tissue produced ethylene at a lower rate than
that of the healthy tissue. Even though the ethylene produced by “intact
stored-bruised fruit did not appear to have been affected by prestorage
bruising, production by excised bruised tissue was reduced:relative to that of
excised healthy tissue from the same fruits (i.e. with respect to ethylene ..
evolution, stored-bruised tissue behaved in a similar manner to freshly .7 1
bruised tissue). Measurement of EFE activity indicated that a decline in the _
ability of this enzyme.to catalyze ‘the formation of ethylene from . -
aminocycIopropane—1—carboxylic acid (ACC), is likely to be“the cause of
reduced ethylene production ‘in bruised tissue. Voo

*
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c) Membrane permeability . o, ——

Membrane permeability changed with fruit maturation; however; brulsing '
increased the amount of electrolytes leaking out of the tissue plugs.: The!®
maximum response to bruising took fonger to develop than elther change in"
color. or reduction in ethylene evolution, and was achieved at about SO minutes
after bruising. The effectof bruising on membrane permeabi ity was-not.... .
reversible and could be measured.to a similar extent in bruised-gtored fruits’
and under all conditions of impact. The extent of leakage was in proportion
to the severity of the bruise and to the force of impact. Leakage from .. ...
lightly bruised tissue, achieved with the lowest impact force used, was not

always significantly higher than-that from the healthy -tissue ‘of the same -

fruits. : O Y A S T : te sty
d) Tissue conductivity .- . o

The consistent effect of_brui;qhg on electrolyte leakage from damaged tissues
‘compared to healthy tissue from the same fruits, led us to’'try to measure this
difference in intact fruits. The use of a conductivity bridge and 2 syringe
needles to serve as electrodes, enabled us to moni tor significant differences
in the conductivity of bruised and healthy tissues. The conductivity of the
bruised tissue increased rapidly relative to that of the surrounding healthy
tissue, within 30 minutes after impact, and in proportion to the force of
impact (R=0.84). This was true for all fruit examined within 24 hours after
bruising and the difference tended to increase as the fruit ripened and
senesced (i.e. became more susceptible) (Klein, 1987).

Since the above method requires penetration of the fruit surface, attempts
were made to develop a nondestructive technique for detecting the changes in
internal conductivity by monitoring differences in conductivity around the
fruit surface. Unfortunately, the use of primitive equipment prevented the
collection of conclusive data. It is still possible that with more
sophisticated equipment meaningful data could be obtained.

0f the four physiological parameters found to change in bruised apple tissue,
electrical conductivity appeared to be the most reliably consistent and highly
correlated with bruise severity. Moreover, it was rapidly detectable and long
lasting. The difficulty remains of finding a suitable method for detecting
the signal nondestructively. In all events, detection of real differences
will require direct contact between a suitable probe and ‘the entire fruit
surface. Therefore, it might not be a very practical solution wi thout an
ingenious idea of how it can be implemented. A L s

r t i isti rui

Numerous attempts have been made to identify the destructive and
nondestructive methods that could be used to distinguish between bruised and
nonbruised surface tissue on apples. ;Brown et al. (1974) and Reid (1976) *
demonstrated that freshly bruised tissue has a lower reflectance than '+~
nonbruised tissue in the visible through near-infrared. Bilanski at al.
(1984) and Pen et al. (1985) reported specific wavelengths for distinguishing
between the bruised and nonbruised tissue on peeled apples. The wavelengths
of their studies ranged from 350 nm to 750 nm. Upchurch et al. (1980) -
investigated the diffuse reflectance in the 400 to 1000 nm wavelength region



for bruised and nonbruised areas on whole-Red Delicious -apples.  From the
reflectance spectra data, different models were developed, and wavelengths
most related to bruised areas:were identified for each mode! by linear -
regression analysis. Only 2.5°- 3.5% of the fruit misclassified resulted from

this study.

: U e LT
3. . }y/% .", - ::':::1?1 \.‘:‘ ‘3"’ f:;"“;z ?' L L S
This project was devoted'to study thagspgctrqphotH_etrlc'dhégaé@erlstibs of.
bruised surface tissue on Golden Delicious apples,<in the range of 400 to 840
nm, as a first step toward the development of a néndestructIVe}method for. %
detection of fresh surface bruises caused by impact.: The specific objective
was to define a classifier that uses the diffuse light reflectivity '

characteristics at one or more pre—defined.narrowbandseip%jh? spectrum.
¥ i B

b e e e s T ~
Apples were harvested from different?growing'regions“In;lsrael and stored at
0° C in air. The apples used for each set of experiments were from the same
harvest. Experiments were.conducted with. apples from ajr storage (stored
apples) at different times of the year, so that the used'apples were from 1 to
6 months old. A series of experiments were also conducted ‘wi th fresh
(nonstored) apples during the harvesting seasons. Prior to:each experiment, a
certain number of apples were removed randomly from storage and allowed to
equilibrate at room temperature for 1 hour. The apples for.the experiment
were randomly selected and bruised by a device identical to the one designed
and used by Upchurch et al. (1990). The device consisted of a transparent
open ended PVC tube of 4 cm diameter and 35.6 cm height containing a plunger
with a 3.9 cm diameter steel disk, weighing 364 g.

Diffuse reflectance of surface tissue of bruised and nonbruised apples was
measured using a Philips PU-8000 double beam scanning computerized
spectrophotometer equipped with an integrating sphere. The wavelength
resolution was 2 nm. The spectrophotometer was calibrated using a standard
white sample of known spectrum for 100% reflectance. In the initial stage,
reflectivity values of the surface tissue in the range of 400 to 840 nm were
obtained for 100 nonbruised stored apples, 100 stored apples that were bruised
and maintained at room temperature for 24 hours, and 100 stored -apples that
were bruised and maintained at room temperature for 90 minutes. In afl of the
reflectivity measurements, the cheek of interest was sliced appropriately
since the sample compartment of the spectrophotometer could not contain a
whole apple. The sliced pieces with a minimum thickness of 15 mm, at the
target area, were then easily placed against the objective aperture of.the
integrating sphere. |t has to be mentioned that maintaining bruised apples at

_room temperature allowed for bruise ‘development, thus affecting the reflection

of surface tissue. The error of classification of the selected model and
selected waveband were tested on a prediction set consisting of 200 stored
apples (100 bruised and 100 nonbruised) and 200 fresh nonstored apples (100
bruised and 100 nonbruised). : S AT L,

-

For each set of experiments an average reflectivity spectra was obtained. The
maximum, minimum, and average reflectance spectra of nonbruised and bruised
surface tissue after 90 minutes and 24 hours are shown in Figures 1 and 2,
respectively. Comparing the spectra in Figure 1, bruised apples' which were
maintained for 90 minutes after impact reflected less of the radiation between
400 and 800 nn than nonbruised apples. The amount of reflected energy from
tissue of bruised apples which were maintained for 24 hours after ‘impact (Fig.
2), was less between 400 and 600 nm when compared to nonbruised apples. - -

C .
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Figure 1. .Average,. minimum, and maximum reflectance spectra from the surface

‘ of Golden Delicious apples after 24 hours? : =~ -3¢ ced
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Figure 2. Average, minimum, and maximum reflectance spectra from the surface

of Golden Delicious apples after 90 minutes.

However, reflected energy in the 600 to 700 nm region from bruised apples
exceeded the corresponding values of the nonbruised apples. From wavelengths
700 nm up to 840 nm, the reflectivity values of the nonbruised surface tissue
exceeded the corresponding values of the bruised surface tissues. '

The next step toward accomplishing the main objective of the project was to
develop a classification criteria by which the bruised and nonbruised surface
tissues could be distinguished. In the present study a relation of the
following type was considered: - '

R

M= f('ki) : P e ‘ 11 (3) o
In equation (1), ry; represented the reflectance value at a wavelength i,
where i indicates the discrete wavelength involved in computation of the value
of M (note that i does not represent a sequential order). Most of the models
tested in this study were presented earlier by Upchurch et al. (1980).- The
models were: R ‘ T : '



Ty} ¢ o o oty T . . « .
M=\ < bebigge avde TR w e (2) situesR DL
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M= (L;=1 i)/l Lo SRR ) B ”
i=1 e i o ewpad e 2l
| ?ﬁf—*‘i%?% . o hualetgigg o
M= 'k1/rl2 ﬂ:ﬁ-f“ :ﬂ*?ﬁ: h.&? ) (4)§£éa.: a
M= rpgmrpg O e R &
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s A AR A L IR 05 ot :,‘js:’g C;" I E’.‘?i.': N
M= ('x1"x2)/'k3"x4) (7)9%2Qﬂ Garalan.
M= (ryag-rag)/(\1-32) bait. T 1;£§A,3
in equation (8), M representslﬁhezkfépe of the connecting"line between two
selected points. In addition to the above equations, a few biased models with
different weighting factors were ‘tried which were unsuccessful.. The above
models were studied and tested on the basis of the reflectance spectra data of
nonbruised tissue. In other words, the developed mode! predicted a nonbruised
tissue. Each model after its development (i.e. once the values of Ai were.

determine
of the mo

d) was applied to the data of brui
del for bruise detection.

in general the models involving subtraction

models 5
enough to
was studi
nm; howev

through 8 are reasonable choices w
cover the unpredicted measurement
ed and tested in selected narrow w
er, wavelengths between 400 to 720

bruise detection purposes.

Formal co
simpler t
wavelengt

mparison of models (2) and (3) ind
o use since it involved the magnit
h. However, due to unexpected sou
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wavelengt
errors.

detection. ‘ , A
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wavelengt

h, models based on a single term w

sed apples, to check the validity
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hen the differences are large
errors. Each of the above models
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Table 2. Results for the ratio model when applied to 300 apples from storage

Percent (%) Correctly Classified
Nonbruised Brulsed ot

96.1 88.4 (after S0 min.) SEARIEL B
o 98.7 (after 24 hours)
{::f’f “ i, '\ -

Y ! . ' ) - ) ) -
Table 3. Results of the ratio model when used to classify bruised tissue on
nonstored apples. . : ’ L N

U B

Percent (%) Correctly Classified IR
i ﬂQ}thulSﬂ‘—=,; A €7 ¥p S;B_ULLS_Q_dﬂ e oL . N

E AT ' -

92.9 .- - *J{ - 91.8 LR

Development of a relatively quick spectrophotometric method of bruise
detection of Golden Delicious apples was the main objective of this study.
Average reflectance in the wavelength ranging from 750 to 800 nm produced the
best criteria for classification of Golden Delicious apples for bruise
detection. Application of the method showed misclassification errors of 3.9%,
11.6% and 6.0% for nonbruised, bruised (90 minutes) and bruised (24 hours)
stored apples, respectively. This method was also applied to fresh nonstored
apples which resulted in misclassification errors of 7.1% with nonbruised and

8.2% with bruised apples.
Spectrophotometric Results and Machine Vision.

Past research on automatic bruise detection on apples has emphasized ’
differences in the near-infrared reflectance between bruised and nonbruised
tissues. Utilizing advances in computer vision technology in conjunction with
near-infrared reflectance, identification of bruised regions on apples has
been attempted with matrix as well.as_line scan cameras (Graf et al., 1981;
Taylor et al., 1984; Rehkugler and Throop, 1986, 1987;'Davenelet’al., 1988).
Earlier spectrophotometric studies had shown that bruised apple tissue had a
lower reflectance in the visible through near-infrared rejion'(Brown et al’,;*
1974). Later studies had identified specific wavelengths in the near-infrared
region that could be used to enhance the difference between bruised and
nonbruised regions on nonpeeled apples (Upchurch et al., 1980). In the study
by Upchurch et al. (1980), the ratio between the reflectance at 780 and 830 na
resulted in a misclassification error of less than 5% on nonpeeled Red ™
Delicious apples. However, there has been no attempt to implement and test
these wavelengths in a machine vision system. The objective of this project
was to evaluate the effectiveness of narrow band filters in a machine vision °
system for enhancing the contrast between the bruised and nonbruised regions

on Red Delicious apples. .

A sample of 85 Red Delicibus abp|es'were hand harvested and stored in
conventional cold storage (0° C). Each apple was bruised by dropping a 39 mm

10
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steel disk a distance fo,f 200 mm onto ;‘t'he’f"sur_face of the fruit. Prior to "3zus’
capturing an image, the apples were held at qpom'temperajuge‘fof§24 hours .to :=a
allow for bruise development: Apples were Individually rotated'before:a-line ::
scan camera in a ditfupdly“il]umlngted_chhm@e( (Taylor,1985). :-Images were . f:1..
captured at each ane[ethh‘baqd.j‘ﬁi]teriﬁ'qed in front of. theicamera:were:a ..
780 nm with a 11 nam bandwidth, 830 nm with a 12 nm bandwidth, and~along‘pass !
near-infrared filter. : An image size of 64 pixels (row) by 240 pixels was LIS
acquired. Algorithms were written to align the images so that a final -image
could. be generated by a pixel-pixel division between the 780 and 830 images.

A mean gray-level within"a™15 by 15 pixel ‘window was 'used as a measureiof the' -
reflectance from bruised and nonbruised regions on individual apples .3 .

P

The contrast improvemants“fpr,ftﬁe'fédf ‘different filtered images are shownsin::

‘Figure 3. Each profile is a plot“of the gray-levels forta’single row of iy

pixels that bisected a bruised region on an apple. From this sequence, the
reflectance difference between bruised and nonbruised regions was greatest in7’
the 780 and long pass nearzinfrared images. Ratioing the 780 and 830 images .
actually reduced the difference between bruised and nonbruised regions without:;
reducing the pixel-to-pixel variations in the image. A comparison of the mean :
gray-level for the two regions exhibited similar results (Table 4). The

Fr
f
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Figureé.'?.Gray level profile of a single row of Pixels that bisected the i
bruised region at a) 789 nm, b) 830 nm, ¢) ratio 780/830, ‘and d) NIR Long ‘Pass.
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R oz -
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.‘ 1



broadband near-infrared image yielded the best contrast between bruised and
nonbruised regions. -Assuming a normal distribution of the means, .the "
broadband misclassified 18.7% of -the nonbruised regions and 14.4% of the -~
bruised ones. The errors occurring with the 780 image were comparable to the
broadband images. : However, there was a significant difference in errors in

both the 830 and -ratio images.. Both sets of Images had errors In excéss of *(: -
oA _— b R

25%. ‘::(:' : J' S ", N et M - “.. . T T
P, o Corppil it b
: e cre e eEiplady Yo L T LT
Table 4. Probability of incorrectly classifying bruised and nonb(filsed regions
in an apple image. e N Y o v
Image Canl e ., Misclassification (%) e,
Type Bruised as Nonbruised . Nonbruised as ?ruised‘_l‘;ﬂﬁ'gﬂ“v G
oy , . B . . 'ﬁ __‘~‘."._ - l J‘«l ) ‘ x .! ~‘ ) .'. . (N
780 Y. 20-9 N o . .’19'1 fr" ) :“ ’ F
830 . ... . = 349 e . .288 FTo
NIR o B T O L L. ST .
Ratio 33.4 . ' 33.8 \wf? . ¥ -
- . A :

| . . )
Although Upchurch et al. (1990) showed that the ratio improved bruise
detectability, contradicting results were found when the fiber optic detector
was replaced with a camera and lense system. The bruise was evident in the
830 nm image while 830 nm in the spectrophotometric study was not highly
correlated with bruised regions.

Several possible factors could contribute to the lack of success in
implementing the spectral information into a machine vision system. First, a
difference in precision existed between the two instrumentation systems. The
spectrophotometer had the capability to measure smaller changes in reflectance
compared to the machine vision system. Another factor is nonlinearity '
response of the solid-state camera. Finally, the bruise cannot be considered
a surface defect, but is a subsurface one that is covered by an infinite thick
(compared to the wavelength) layer. The peel is a diffusely reflecting layer
that masks part of the energy being reflected from the bruised tissue. In the
spectrophotometer, the light source and detector were arranged so that the
light energy from the apple tissue was the main reflection.

im fects on D i
Detecting differences in the near-infrared reflectance between bruised ‘and
nonbruised -regions on apples has had limited success with machine vision
systems. As shown by previous research, automatic bruise detection is a
difficult problem caused by the wide variability in reflectance between apples
and within a single fruit. Temporal factors have not been formally analyzed.
As the bruise ages, the near-infrared reflectance from that region also
changes (Brown et al., 1974;Graf et al., 1981). The objective of this
experiment was to evaluate time effects on the near-infrared reflectance from

bruised and nonbruised regions on apples.
Red Delicious and Golden Delicious apples were hand harvested in mid-September

during the 1991 season. A total of 64 fruit for each variety were placed in
tray packs and stored in conventional cold storage at 0°C. Prior-to the first

12
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Inspéctién\date?7ééch fidft was_b;ﬁised"§§;dr3pping a 39 hm'dfaméter stéeii%mév
disk from a distance of 200 mm_onto. the surface of the fruit. : Samples.were 37.;

held at room temperature, 20°C.“for 24 hours™ to allow*forsthe: damaged-area: to -
develop the browning.that is indicative of bruise damage. For each sampling

$ .0

date, fruit were rpmoyed,froq'stora§§:24.hours prior*to‘lnspectlohlﬁy&Tmagea.;aAA“

WQ:WéfeiacﬁUl?éd'atﬂgbe.gbytgfgqtgggags fq:}3w0”mdnthdibeglnﬁing%jnk$1
proTE R UG W W gid 30T D o0 contl s ghfisoenl
Novembe‘f i & uY Ay ptn AT e 3&&3@% f"‘-'i’ﬂ'iﬂ"i’s}? &gg B “ﬁ‘"?‘ PP géi% 2';::}::’;5 |
images of apples were acquired by digitizing the output ‘from a RS-170 -
solid-state camera. A PC-based system equipped with a Data Translation frame
grabber and frame processor was used to acquire the images. _Images were
transferred to a VAX 4000/200 (Digital Equipment Corp:) and analyzed with
image processing software from Euclid Computer Co. A CCD array camera (Model
4810, COHU Electronics) without-the‘infrared blocking filter was used to

of each .app]

acquire images of the apples.: A 25mm lense with an aperature set at f1.4 was
mounted to the camera. To limit the teflectance from the apple to the
near—infrared region, a long pass filter (Kodak Wratten 89B):was placed :
between the camera lense and apple. Two images of each - apple were captured. .
The bruised region was centered in the initial image while a second image was
acquired after rotating the apple 135° so that the bruised region was absent
in the image. To maintain equivalent measurements between dates, a reference.
image of a teflon cylinder was acquired at four times on each date.

e

-

The mean value of the pixels around a circular profile at 1° increments was ;
measure of the intensity of near-infrared reflectance (NIR) from bruised and -
nonbruised regions. Three concentric circles were used (Figure 4).

Ring 2

Brulse
Figure 4. Diagram showing the location of the 3 concentric profiles on t§he
apple. : s ‘ AR

Initially, the center of the bruised region was interactively identified in
the image and used as the center for the concentric profiles.. To determine
the diameter of the outer two circles, the outer edge of the bruised region in
the y-direction was measured interactively.. The diameter:of the middlie 2% .
profile was twice the difference between the center and outer location:minus
30 pixels while the outer circle had a diameter twice the difference plus 30
pixels. The third circular profile had a constant diameter of 10. After=."
measuring the mean gray value around each circle, the three profiles were
applied to the nonbruised side. Each mean value was divided by the mean” for -
the reference and then multiplied by 255. Since the relative changes i’
reflectance between bruised and.nonbruised regions were important, the

S . TLe T L@ gagtt

b
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difference between adjacent profiles (nonbruised - bruised) were calculated

and compared. This procedure was repeated on the nonblemished side by -7 -.-
calculating differences between nonbruised.regions. e s
Time had a significant effect Qf,tha,near11nffared_reflgé@anca from bruised -
and nonbruised regions on both Red Delicious and GoldenDelicious apples. A
Comparing a linear profile that disected a bruised ‘region, the reflectance - -
from a bruised region decreased to minimum level with time (Figure §).-% -+

PR o S T _r,'». . A . . . -
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: " Pixef Locotion
Figure 5. Linear profiles showing the pixel intensities across the apple and

how the reflection from a bruised region changes with time.

The maximum difference in reflectance usually occurred 24 hours after inducing
the bruise. After one month in storage, the reflectance from the bruised
regions increased to a level equivalent to the reflectance from nonbruised
regions. This increase in reflectance continued until the reflectance from
bruised regions exceeded that from nonbruised regions. Reflectances from
Golden Delicious exhibited similar changes with time. The two profiles from
the bruised regions on Red Delicious and Golden Delicious apples were
significantly different (Pr < 0.05) from the nonbruised regions for the 24
hour test (Tables 5 and 6).

-

Table 5. Effects of time on the reflectance from bruised and nonbruised
regions on Red Delicious apples as measured by the mean gray-level
of a circular profile.

Profile " TEST DATE ' .
Size Yov Dec Jan '
Mean Std Mean Std Mean Std
BRUISED SIDE . . ; N
"small 2312 8.0 ‘2352 6.5 2443 -4 .1
medium 2302 8.4 2358 < ''7.3 2470 3.8
large 241 7.6 .-238% © 5.0 24232 - 3.7 -
NONBRUISED SIDE _ : S e
small 2440 7.5 2422 5.0 2443 4.9
medium 2430 7.5 2412 5.1 2443 4.5
large 2420 7.5 2392 4.8 2432 4.4

+

"Means with the same letter are not significantly different at 95% confidence
tevel.

-
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Table 6. Effects of time on z_thei r"éﬁg’étgné_’é’:_f rom bruised and nonbruised, «iy¥
» .. . regions on,{GoldenjpeIqugyg}}app!es“as measured by. ‘the mean .z= riag
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For both varieties, there were no siéﬁifiqant di fferences between the. four .,
nonbruised profiles. After one month in‘storage, the mean’ reflectance -from
bruised regions increased to a level where there were no significant
differences between any profiles. A significant difference only existed for
the middle profile from the bruised region for the third test date on Red
Delicious (Table 5). However, there were no significant differences between
the profiles on Golden Delicious for the final date (Table 6). *
Automatic bruise detection by machine vision depends upon the ability of the
system to detect spatial and magnitude relationships between groups of pixels.
The maximum difference in reflectance between bruised and nonbruised areas was
16 gray levels which is approximately a 10-15% decrease in reflectance (Figure

6).
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Figure 6. Distribution of the differences between the larger two profilesion
. the bruised side of the fruit. (A negative difference indicated :.~

that the reflectance from the bruised region was greater than that

i« from the adjacent nonbruisedisite. '~ e d beeant
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This maximum difference occurred between the larger two profiles on_the _
bruised side. For the 64 Red Delicious apples, the mean difference was ' “: -
initially 11.3. This mean difference decreased to 3.5 in‘December and -4.5 In
January. A negative difference indicated that the reflectance from the
bruised region was greater than.the adjacent nonbruised site. Mean

di fferences among the nonbruised regions were within 2 gray levels for the

three test dates.: ' i (- I

Near-infrared reflectance from bruised regions on Red Delicious and Golden
Delicious apples changed with time while the reflectance from nonbruised
regions remained relatively constant. This change in reflectance is critical
when machine visions systems are being designed to automatically detect "
‘bruises on apples. An automatic bruise detection system must be-able to '
detect bruises of various ages. However, the detection is more difficult when
the amount of light reflected from the bruised area varies with“gime.i-\i* Ry

YT

| . | R . ‘ g .
ol ';y?f’:

The appearance of-Golden Delicious apples is the primary factor on which the
consumer makes a purchasing decision. The consumer’ expects bruise and blemish
free fruit. The eye is a sensitive sensor that uses spectral reflectance " from
the apple surface to judge overall quality. As the technology became
available, it was only natural for scientists to measure surface reflectance

to quantify apple quality and maturity.

Mechanical injury of Golden Delicious apples can result in softening and
discoloration of the tissue under the apple's skin.  The discoloration or
browning of fruits is ascribed to the oxidation and polymerization of phenolic
compounds (Walker, 1964). Unlike red cultivars which tend to mask the
browning, the partially translucent yellow skin of Golden Delicious apples
allows the browning to show through the skin in sharp contrast to the uniform
fruit color. Spectral reflectance at 600nm was used to measure browning on
Golden Delicious apples and was correlated with time and temperature (ingle
and Hyde, 1968) Discoloration was expressed as the difference between normal
and injured tissue reflectance. Golden Delicious were found to discolor
erratically and more slowly than other cultivars and temperature was found to
have little effect on the rate of browning (Ingle and Hyde,1968). The
reduction in surface reflectance between normal and bruised tissue for Golden
Delicious was found to be about 8% compared to 11% for red cultivars such as
Red Delicious and Mcintosh (Ingle and Hyde, 1968). Surface reflectance using
wavelengths between 700 - 2200nm was reduced for bruised compared to normal
Golden Delicious tissue (Brown et al., 1974). The significance of this
finding was that it removed color variations from the reflectance measurement
for bruised tissue. All of the above surface reflectance measurements were
made with spectrophotometers and would not be applicable to high speed

—

measurement required on packing ‘Tines. ™"

Digital image processing can measure surface reflectance over the total fruit
surface to find areas of lower surface reflectance which could be bruises.
This method has the potential to measure surface reflectance of a stream of
apples on the packing line. Linear discriminate classifiers were determined
from a training set of apples with known bruise areas (Graf,1982). Predicting
bruised tissue on Golden Delicious apples, NIR reflectance for wavelengths

(3

between 750nm to 850nm showed correlations to actual bruising of 0.22 compared

16
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bruises on Golden Delicious apples a
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to 0.72 or better for Delicious and Mcintosh (Grhf,1982). When the apples -

§ e

were cut after testing,-a layer of good tissue -cells.was found-just under -the ...

skin of the Golden Delicious, unlike Delicious and McIntosh which had damaged

<

.cells (Graf, 1982).- This observed geductlon%ln surface reflectance in’both ™.
the visible and NlR?wavpjengths*jQ[sbruisqd tissue on Golden Delicious apples...

5

leads to 'the objectives’ of this study to examine digital Imaging of diffuse .-
surface reflectance in“the visible and NIR spectrums as methods for” detecting ™
and determine which -features of reflected ;.
light (NIR,RGB, and HSI) are_the most efféective for detectifg damaged, tissue
on Golden Delicious apples before and after storaga;’??“‘*‘*“”“””‘““g}‘?*f e
R N I e e it
A group of 88 Golden Delicious apples were hand harvested in mid-September
during the 1991 harvest season at the Appalachian Fruit Research Station ’in
Kearneysville, W. A 39 mm diameter steel disk was dropped onto the surface
of.each fruit. Samples were held for 24 hours at 20°C to allow full bruise -
development and then digital ‘images weré ‘captured (time 1) Thereafter,” -~ =™
images were grabbed twice at one month 'intervals' (time 2 and itime 3). The
apples were removed from cold storage 24 ‘hours prior©to*imaging<and held at
20°C. Two 512 pixel x 512 pixel images (NIR and RGB) of every apple were
acquired;-one with_the bruise normal to the lense and a second with the bruise
rotated 105 degrees away from the lense axis displaying only.undamaged —--. .
tissue. Image processing of all images consisted of interactively locating
and .recording the location of the center of the bruised area as described in 7

previous section.

ki
[

surface reflectance of nonbruised tissue for Golden Delicious was found to
decrease significantly from the fruit center outwards for the reflectance
features of NIR, red, green, blue, hue, and intensity (p<0.01). However,
saturation exhibited a significant (p<0.01) increase. A color difference for
good tissue was found between ring 3 that was outside the bruised region and
ring 3 from the nonbruised side. There was less red, more green, more blue,
greater hue, less saturation and more intensity on the nonbruised side of the
apples versus the bruised side (p<0.01). From the data collected it was not
possible to tell if this difference was an interaction from the bruising -
process in good tissue adjacent to bruised tissue or was a natural ‘color
variation. NIR, green, red and hue (Figure 5a) were more effective for .
discriminating bruised from nonbruised areas (largest t-values for comparison
of rings 2 and 3 at the bruise location). Large variations in surface =~
reflectance for blue, saturation, and intensity reduced their discriminating
ability (Figure 7b). Red, green and hue (Figure 8b-d), unlike NIR (Figure 8a),
did not show the increase in reflectance for bruised tissue with storage time.
These features could be used to form a discriminate function for identifying -

bruising on stored Golden Delicious apples.

) “1 A — ',‘ . . ;,A',f V. - LT » R . . . ) ‘
In recent years, image processing for agnlcultural*appllcatlons‘hasfbeen%gm§r
widely used in research and industry. Many of these algorithms trace the w014

boundary of pixel clusters and determine‘their ‘@area.t:'- - . v
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Image processing algorithms were developed for building a database
A boundary chain code "

properties of seeds (Cooper et al., 1985).

-

b g

<
Sab

for three storage dates af_tes.___br_uising for a) NIR, b) ‘green, ¢)'”

» ., -

'Oft physical

ug

representation of a berry's profile was obtained in an attempt to detect stems

in a binary image (Volfe et al., 1985).
representation of a tomato's boundary was used
feature for detecting shape. McClure et. al.

encoding algorithm with the last pixel in the center row of the scene.
ched in a clockwise direction
The search continued until the

this pixel an eight pixel neighborhood was sear
to find the next white pixel on the boundary.

.18
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An eight neighborhood chain code
by Sarkar et al (1985) as the
(1987) started their boundary
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next white pixel waéfthq‘stértind‘ﬁixel.? Sapirsteiniet:zal:;(1987) applied an,
eight pixel'ppnnegted_iegion‘ghat;alloweqfégge following of cereal,kernels, for:" .
inspection and classificatlonf“Sltes”étiﬁal?ﬁ(1988)zused?eight‘connecttmlﬁyﬁﬁ§;ﬂ
analysis to locate fruits on peach and apple trees:1:This’analysis defined Bt
pixels to,be connected |f they had aqcommon_vertical,;hoylzontal_or diagonal ,
boundary.: Rehkugler et. al. (1989) u§ed*alveptpr‘brlentedacontour.follpﬁjpgg@; g
routine to size brulaes'on'gppleszfﬁ|nﬁthe“bame“paperﬁﬁan*algorithm~that§@%§?Q '
located the median pixe! in each dlustei row and from there searches ileft.and -
right.for the edge. of the cluster in that row was reported. The objective of
this study was to develop a method to evaluate™algorithm performance for <<’
cluster boundary identification<ahd*determine'which'identifichtion‘algorithm,
CLUSTER (Rehkugler's vector oriented), CENTROID (Rehkugler's median pixel) or

BOUNDARY (eight connectivity), produced-the most:accuratei results fornthe .:# .o
least amount of procgssing time. o h

*

- .

2 NN PRI IR
Twelve test images consisting of 256 pixel-by 256 columns were generated :for 3
testing. Eleven different cluster types or - shapes were ‘identified (Figure.9).:y

Figure 9. Eleven cluster types or shapes used to test the algorithms
per formance. :

Each test image consisted of 10 identical clusters and each test image had a
different cluster type. Clusters were black (grey level of 0) on a white
background (grey level of 200). The 12th test image was a white background
only. Each test cluster type was constructed with different geometric or
spatial characteristics to test the ability of each algorithm to find the area
and perimeter. Processing efficiency was measured in terms of processing

time. Table 7 shows the area and 4-connectivity perimeter in pixels for each
test cluster.

Table 7. Cluster shapes shown with the actual measured area and perimeter

pixel with 4- and 8-connectivity.
Cluster Number ~ Measured area ‘4-connecitivity - 8-connectivity =u:”
1 116 32 . 44 S
2 390 T30 . 173 g Piom sk
3 392 . 136 172
4 152 o 18 ) 84
5 18 32:¢ - ‘f:"44
6 . 16x2 S 32 x0T 44 x 2 to AT
7T 23 - 60 - ¢ - 84 7. PR PR
8 232 64 90
9 376 128 156
10 416 119 145
11 388 120 _ 150
.19



The cluster area, perimeter, and processing time for each test Image was '
recorded as data. The time to scan an .image with no clusters_was subtracted -
from the images of test clusters and- the resulting time was divided by 10 to '’
find the mean time per.cluster. .- 3.,;7.. . L Ce e DT TGRS
e le e e BRIl el L i add fiA%at L Lo sl T REREEY (G AA
All of the three algorithms correctly-determined the cluster afea’in'pixele?* ** -
Di fferences between the measured 4-connectivity perimeter and the pér[moter“‘"'

T LI .
Siebie B i

caiculated by the three algorithms is shown in Table 8. ., ... .. ..

: s oo o B X PO . w":' "“.. o . t.‘ .
Table8. - The results for a t-test. found no slgn’lficant*d‘ifferences between

o the calculated perimeters for the three tested algorithms (p>0.2).°

: ’ coeten TLoge N _—
Differences N - - tMean Stgndard‘Dgyjﬁjion ;- Calculated t
CLUSTER 11 -1.286 3.068 T g9
CENTROID 11 - 0.286 4.209 , . 031 . L
BOUNDARY . 11 .-0.857 .. 2.056 - -1.91 -

CENTROID was slowest algorithm, taking at least twice as long to process each
cluster (Figure 10). s ]

None of the algorithms handled clusters which had a pixel forming two
different boundaries. These pixels are only counted as perimeter pixels once
(test clusters 8, 9, 10, 11). CENTROID interpreted the island pixels in
cluster 5 as perimeter pixels. BOUNDARY counted one of the two islands in
cluster 5 as perimeter pixels because of the island's close proximity to the
cluster's border. The results showed that the CLUSTER and BOUNDARY algorithms
are not significantly different in performance or speed and either would be

appropriate for analyzing apple bruises.

r. F -

3.,

Figure 10. The time for each cluster type is shown for each algorithm.
Nonorientati for Appl t ion. '

A feasibility study and prelimihafy design for an imaging system for
non-oriented apples was undertaken (Real Time 3-D Image System, Master of

Engineering Project by Wen-Chung Chen). The preliminary design employed 4
line scan cameras (a camera on each side of the apple) and appropriate lights,

AN
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N 5 N R R SR Tk AR I ., - | i - T e
a unit to detect incoming apgle%-gﬁdiscgn?thq four ‘cameras; and.a‘data risiipis
acquisition system., . = Toed DV WIMIL Lip fNE A - # RIS ¥ 0 £
o SOVHEmID  RREL s b i 2y apird o) |

The transport system was_designed’to cause the apples toipass the:cameras :in,.;
“approximately 26ms. - -In -order to obtain 75 scans of.each of the 4 line scan -
cameras (64 photo=detectors), a scan;rate‘ofﬁapproxImately¥850KHz§was;needqg;j

At this frequency;”line drivers wefé’ﬁsed;fgifdafa;tféﬁsleglon over, :long dmiy .
cable lengths and“uﬁdgi‘5Iectrically?ﬁdlsy‘conditidns.etensesf(25mm.aEJ.8:wj$h
a 0.5mm lens extension), camera (Ret 1¢on"LCE00 C64-2) .and :fights:(PAR-64.: {03
bulbs) were specified.  This provided a”camera-systemswith-a:working distance-
of 10 inches, a depth of field of 2 inches, and a’camera’with a:1:3 microwatt*
sec/cm2 sensitivity. The lights needed to provide approximately 330,000
fumens .for an assuMed:refleqtion_rate'o{ 30%,1*The?datadacquisition system .. ¢
selected was a DT2851' frame grabber 'board ‘installed in‘an IBM-AT computer .:ig;.s
Mateiial..constrpctign,jand.deyglopmehtfcosts were:considered to high to-ice.
attempt actua[wconstrbctiOQ'becaﬁée?of‘the reduced funding!experienced by this
BARD project_anﬂuojhefnrg§ear¢h§fundlhb SOUrCes.i-ui T4 LauagIt Iy " mnui oy

- ,...eu‘.;v,;:.';.‘..'% B 7 LS S S AU L T TR AL 3"?-‘:.1{7?':’7; e Py -1?0"jf';$"3{,*'
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Watercore is characterized by the filling of the large intracellular air
spaces with fluid and does not generally'alter the external appearance of the
fruit until severe tissue breakdown occurs. Mild watercore has fluid around
some of the 10 vascular bundles whereas severe watercore is characterized by -
the coalescing of the fluid. Currently, this damage is evaluated by visual

inspection of sliced apple halves from a random sample.

B - [ 3 vz .

Fluid filling the intracellular spaces alters the light scattering properties
of apple tissue. For normal apple tissue, the presence of air spaces
increases the optical path length through the fruit due to intense light
scattering. Light scattering is reduced for watercore fruit and results in
more energy being transmitted through the fruit (Birth and Olsen, 1964). An.
instrument that measured the optical-density difference at 760 and 810 nm was
used to detect watercore (Birth and Olsen, 1964; Birth and Norris, 1965). '

This single point measurement was expanded into an area measurement by using a
machine vision system (Throop et al., 1989,1991). ° o

Severity of watercore and elapsed time before inspection affect the ability to
detect watercored fruit with light transmission techniques. Researchers have
reported that mild watercore has a high probability of diminishing with ‘hmiid
time,while severely watercored fruit will probably exhibit internal breakdown
(Marlow and Loescher, 1984; Myers, 1983). For apples placed in regular .cold
storage, light transmission levels .decreased to undetectable levels with
initial camera settings for all classes of watercore (Upchurch et al., 1991).
However, it is unknown as to the effect of storage conditions, regular cold

storage versus controlled atmosphere, on. he:l}ght%trqnsmfssiOn:properties%of
watercored fruit. ~ . - S wotarotua ogieag et TSV . .
T S oresmig o ~oromyead b Lo ozl oo

Over 200 Delicious appleé,were)segregétéd into four watercore classes ‘irc -,
following the procedure described by Throop -et al. (1989) . Class assignment;
was based on the amount of light that ‘was-transmitted through the fruit.

Measurements were made at Cornell University prior to overnight shipment to..
the Georgia Experiment Station. On arrival at-the Georgia Experiment s -s?

- a1



Station, light transmission levels were measured with a machine vision system.

Eighty-eight apples of varying watercore were placed in 'controlled ‘atmosphere”
(CA) storage while another 88 fruit were placed in conventional cold storage. -
Temperature of all fruit were maintained at 4°C.

as ¥ . .
- R »‘0‘-"»1‘:"” .T...ﬁ LTy

Lo & K
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Light transmission levels-were measured at 2,4,6,10;14, and 22 wesks Into

“the™
study. Apples were positioned with the stem-calyx axis collinear to a 150°U sk
incadescent light source. .Uhile illuminating.the calyx-end of ‘the apple, & ‘'
CCD camera viewed -the-stem-end. (The mean gray level within'a window_that was
centered :about . the stem was:an indicator of the amount’of light that w g ek
transmitted through.the fruit. . -5 . .o " “"‘*f‘f.~'§’?“

e Mo R T B~ Lot nehry R . . ‘_" .-
‘Anatomical evaluation of watercored andaégnwatprcoted tissue was ‘performed on
each sampling date. After measuring 3hg;4!ghgctransmis§ion‘levels. a“random -’
sample of 10 apples were removed from.each storage group,and destructively '
evaluated for visual watercore..;Moisture content of watercored areas as well
as nonaffected tissues was measured:by vacuum oven method. _Anatomical ‘\‘i
evaluation was performed on selected tissues with a scanning electron -
microscope (SEM). Apple tissue samples were prepared for SEM evaluation by ..
chemical fixation and cryo-fracturing (Kim and Hung, 1990). - Tl

S8t C e
Preliminary results indicated that the type of storage has an affect on'the
amount of light transmitted through the fruit. For both CA and conventional
storage, apples with no watercore had low levels of light transmitted through
the fruit. Apples with severe watercore may or may not have a high light
transmission score. Transmission levels appeared to remain higher for the CA
group compared to the conventional storage apples. Light transmission scores
for CA stored apples were not significantly different from the conventional
storage scores during the first 5 sample dates (November 5 to January 2).
However, a significant increase in the light transmission score was exhibited
for the period January 28 to March 23. At the end of the study, light
transmission scores were near zero for both treatments.

Uatercored tissue exhibited anatomical differences. Initially, cells within
watercored tissue were elongated when compared to cells from nonwatercored
tissue. This elongation of the cells became less pronounced as storage time
increased in both CA and conventional storage. Although the light '
transmission levels decreased to undetectable levels by April 23, watercore .
was still evident in some fruit; however, the fluid around the vascular
bundles had changed from a translucent to a cloudy appearance. Further work °
is needed to ascertain the effect of watercore on cell wall structure and the
effect-of time on the fluid in the tissue. S T

. DESCRIPTIONOFCOOPERATION =~ -~ %"

L e . 4. o
Different aspects of automatic bruise detection were addressed by the ~ "
cooperators on this project. ‘Automatic bruise detection “is a very difficult -
research problem, and there are several areas that needed to be investigated
in both basic and applied research. -There were physiological changes in the
apple tissue that needed to be defined.~ Drs. Ruth Ben-Arie, Lillian Sonego,’
and Nurit Flohr investigated basic physiological changes that occur when apple
tissue is damaged and how these changes could be measured was a major part of,

their effort. The technique that has potential for automatic bruise de}e?tion

s ey
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is image processing of near-infrared or color-images. Limitations of  *

near-infrared .imaging as well as the problems with applying spectrophotometric
results Into a machine vision éiptém'ware‘lnveétigatedzbyﬁthe‘Appalachlan,ggai
Fruit Research Station.  In a’paralle|istﬁdyfathorndlleniverslty;nimagejg;;g.

NERT RS S

w ed. .. e A
ef»e use« _,‘}‘l':; » %”ia _\’"‘«Y. PR s 13 ’ .

project. Correspondence between the two_countries was maintained with

i

e

processing algorithms were developed foradlstinguiEhlng%b(uLsédfftom;J;;wg§;i¢-h.:

nonbruised regions .in, images of apples.. Both near-infrared and color images - °
L Aty T B ol gpieasfeah D G d el

Coartitel e vl cabed aglend 1 }-,;,'g;ﬁm;é;gfié;ﬁ’;%;:}_'"

AT TR IR ol 1 e - ¥ R,
Various forms of communication were used by. the: cooperators.of.this research.g -

electronic mail (BITNET) ¥ A minimum of three meetingsiper ‘year were held = -

between Appalachian“Frﬁft'Research Station.and Cornell University-to review ;
the progress of each station, and plan the following:year's work. “u  iiegic:

EVALUATION OF RESEARCH ACHIEVEMENTS

The overall goal of the project was tq.déveﬁop‘ﬁ*photbﬁét?ic measurement .. i
l [

‘technique for detecting defects on apples and ‘investigate physiological i izu

changes in damaged tissue that might lead to alternative sensing techniques.
Most of the research effort concentrated on characterizing the anatomical ;and"
physiological changes that occur in techniques for: detecting bruises. During
the project, it became apparent that color imaging has more limitations that
near-infrared imaging for detecting bruises on Golden Delicious apples. @«
However, color imaging appears to present an advantage in detecting bruises .
that are over 1 month old. Time or age of the bruise is a very limiting
factor for detecting bruises with near—infrared imaging. Near-infrared
imaging detected bruised after 24 hours on both Red Delicious and Golden
Delicious apples. For automatic bruise detection, the system must adapt and
inspect for various age bruises. The physiological and anatomical studies may
provide some explanations as to the changes in light reflectance experienced
in these studies. To understand the changes in light reflectance over time
and between varieties, there is a need for an engineer and physiologist to
work very closely in relating the light interaction with the tissue -
condition. No effort was given toward the development of a prototype system:
however, design considerations and limi tations of an inspection system have =

been well defined by this project.
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SUMMARY:
Picture segmentation into clusters is an important image processing
technique in agriculture, Three methods of determining cluster area and

is very similmforthethreealgoﬁﬂxms.'fmcefﬁcimcy of the contour
following routines (CLUSTER and BOUNDARY) is better than that of the .

jmage processing, segmentation, cluster, area, perimeter.

This is an original presentation of the author(s) who alone are responsible for its
contents. .

A"‘erlcan . The Society is not responsidle for statements or opinions advanced in reports Of
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Picture segmentation into clusters is an‘important echn
in agriculture. Three, methods (CLUSTER, CENTROID, and BOUNDARY) ;{,.f
predict cluster area and perimeter length on €leven test clustersww;gﬁiffé‘féiﬁt Ao
shapes and sizes. All of the méthods accurately determine area:but have equal _ -
difficulty finding perimeter len th when the same pixels form two different .-
edges. CENTROID 1akes twice as long to process clusters. Discussion of the 4 -
connectivity and 8 - connectivity describe the problem of determining true . .
perimeter length in digitized, ixnggesl" R B oyasined o s L
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In recent years, image processing for agricultural applications has been s
widely used in research and industry. Many of these algorithms trace the "=
boundary of clusters and defermine clusterarea. V. sl A

Image processing algorithms were developed for building a data base of seed
physical properties. After image thresholding and connectivity analysis, selected
features were extracted (Cooper and Berlage, 1985). A boundary chain code
representation of a berry’s profile was obtained in an attempt to detect stems in a
binary image (Wolfe and Sandler, 1985). An eight neighborhood chain code
representation of a tomato’s boundary was used by Sarkar and Wolfe (1985) as
the feature for detecting shape. Guyer et. al. (1986) determined that the .
perimeter of a leaf is the sum of all the object pixels bordering the background
and the area is the sum of all the object pixels. They do not mention the method
by which they calculated the above features. McClure and Morrow, (1987) started
their boundary encoding algorithm with the last pixel in the center row of the
scene. From this found pixel an eight neighborhood was searched in a clockwise
direction to find the next white pixel on the boundary. The search continued until
the next white pixel was the starting pixel. Sapirstein et al. (1987) applied an
eight connected region for edge following of cereal kemels for inspection. ,
classification. Sites and Delwiche (1988) used eight connectivity analysis to locate
fruits on peach and apple trees. This analysis defined pixels to be connected if
they had a common vertical, horizontal or diagonal boundary. The actual
implementation was done by a contour following technique as shown in Nevatia
(1982). Pixels inte ior to the object’s contour were considered to be part of the
object. Rehkugler and Throop (1989) used a vector oriented contour following

routine to size bruises on apples. In the same paper they also report about an
algorithm that locates the median pixel in each row of the cluster and from there
searches right and left for the edge of the cluster in that row. An eight neighbor
contour following routine to detect the size of spray droplets on leaves was used
by Sagi and Derksen (1991). The algorithm started with the most upper left pixel
of the cluster following the contour in a clockwise direction. '

Segmentation of images into clusters is a vital step in agricultural applications
of image processing because of the need to determine geometric features of

29



objects. One of the final processing steps in those applications would be the
determination of cluster perimeter and area in the digital picture. Rosenfeld and
Kak (1976) mention that the definition of a perimeter, of a digital picture is not
trivial and give a few possibilities: :~- ¢e- . <3 AL erradtt
1) The sum of the lengths of the “cracks” separating points of the object (S) ;.
from it’s background (S°), in other words, the number of pairs of points ©9 .
with ‘p in(S)and q in(§"). =~ S IR ' :

% i e e
2) The number of steps taken by a border following algorithm in following
the border of S. - Ceme LT

3) The number of border points of S, i.e. the area of the border of S and S°..

Levine (1985) assumed that a border is simple, bounded and a closed curve .
which does not intersect with it self. All elements of the border must touch at
least one pixel in the exterior set conceptually separating it from the interior.
Levine concluded that a count of all pixels in the object having both ‘0’ and ‘1’
neighbors yields the perimeter.”. . S IR .

®Levine also stated that a discretization of an analog shape may cause errors as
great as 20% in the perimeter measurements.Wechsler (1981) points out that due
to the discrete grid, the perimeter measurements fluctuate according to the
orientation of the object across the grid and/or the calibration factor used (scale
factor between the grid size and real unit of measure). These errors could be as
large as 20% when estimates of perimeter are made.

Kupla (1977) says that a contour of an object in a discrete binary image can
be determined with 4 - connectivity or 8 - connectivity definitions. With the
known boundary pixel located at (i), only pixels of a 3x3 neighborhood shown
in each case in Figure 1 are checked for the next boundary pixel. The difference
between the 4 - connectivity and 8 - connectivity is that for the 8 - connectivity
the diagonal neighbors are considered as boundary pixels. - ,

All of the above applications and those which have not been mentioned here
use a variety of methods for determining features of clusters, none of which have
shown to perform better than the others. B N |

ﬁeobjecﬁvwofthispaperax'é: S

1) Develop criteria for evaluating cluster segmentation algorithms.

2) Evaluate the performance of three cluster segmentation algorithms.
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Image analysis is performed on a 80286 microprocessor equipped - - -
microcomputer with a frame grabber (DT2851), a frame processor (DT2858),
and a librarir of image processing functions (DT - IRIS) manufactured by Data
Translation!, 160 Locke Dr., Marlboro, MA 01752 is installed. The ‘C’ .
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! Ihe mention of specific products is for the information of the reader only and is pot considered
an endorsement by Comeﬁ University or the authors. e LS

“ e e

e

< 30



: e ek i e v ‘jﬁ%;y;a e L ,
programming languag ;Mlcmspgg C,Microsoft 16011:NE36th Way, Redmond,
WA 98073) is used for algorithm developiment. : .- mlfise vgeind g erers e
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.+.Twelve test images consisting of 256 pixel rows by 256 pixel columns'are ™
generated for testing purposes. Ten idenﬁéal"black'pixel clusters (gray.level of 0)

are drawn within the white background (gray level of 200) to form each image .

(Figure 2). Each test clusteris constructed with different geometric of spatial
characteristics to test the ability of each algorithm to find the area and perimeter,

during which processing efficiency is béing measured in terms of processing .
time. Table 1 shows the area, {-ponngcti\{ity perimeter, 8-connectivity perimeter
in pixels (as defined previously gq*gbg introduction), for.each type of tes;@"g;qs}er.

The following is a geometric description‘of each test cluster (Figure 2): ¢ <
"~ 1. Simple single circular cluster for timing the process for single cluster. .
. 9. Single circular cluster with right angle protrusions pointing in a clockwise
direction to check algorithm sensitivity in the clockwise direction during ...~
processing. ‘ U

3. Single circular cluster with right angle protrusions pointing in a counter-
clockwise direction to check algorithm sensitivity in the counter - clockwise
direction during processing. |

4. Single square cluster with two right angle protrusions, one pointing
clockwise and the other pointing counter-clockwise, to check for problems
processing right angle turns both clockwise and counter - clockwise in the .
perimeter. I | . S
: 5. Simple single circular cluster with two 4-pixel islands within, to check

how the algorithm processes the island pixels. ~ R

6. Two simple circular clusters side-by-side with a single column of pixels

between. This shows what effect adjacent clusters have on processing. '
1. Two simple circular clusters side-by-side with no pixels between 50 thata

single cluster is formed to test if the algorithm can recognize this geometric

configuration as a single cluster.’~ .~ e

8. Two simple circular clusters side-by-side with a single common pixel side
between so that a single cluster connection is formed. This configuration tests the
severest geometric shape of a single cluster perimeter. Cene sa

9. Single circular cluster with two straight overlapping vertical protrusions,
first from the bottom and second from the top with a single column of pixels
between. This is to test both overlapping protrusions and their orderof . .-
appearance in the geometric configuration of the cluster during processing.

10. Single circular cluster with two straight overlapping horizontal
protrusions, first from the left and second from the right with a single row of
pixels between. Same test purpose as the previous image.. .  w-n”

11. Single circular cluster with two straight overlapping vertical
protrusions, first from the.top and second from the bottom with a single column

of pixels between. Same test purpose as forimage 9. . N

v
>
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12. Image of the white background with no black clusters present. By 27
processing an image without clusters, the time to scan an image without clusters - -
can be recorded. A I A S L

. ; o . .
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Testing of the three algorithmsis performed by & common microprocessor.
The area, perimeter, and processing time for each image is recorded ag data; The
time is found by placing the ‘ftime’ function in the algorithm immediately before
and after image processing occurs o that jmagé or dat,aﬁrgagingjlwrit'ing‘ara not_;
included. The difference between these two times represents the image processing
time. The time to scan an image without clusters is subtracted from the e it
processing time. Since each image holds ten identical clusters, this remaining time
is divided by ten to find an average computational time for each test cluster. This
is necessary because the computer actually updates the clock only 18.2 times a -
second or approximately once every 55 milliseconds. The image processing time
recorded has a tolerance of + or - 54 milliseconds. Averaging multiple readings

helps to smooth out the large error from the tolerance.

Contour following is intrinsically a serial operation where an error made at
any step makes succeeding errors more likely. This is true of the three different
algorithms named CLUSTER, CENTROID, and BOUNDARY described in this
paper. Figures 3, 4, and 5 show flow diagrams for each program. BOUNDARY
and CLUSTER follow the cluster edge in a clockwise direction. CENTROID
locates the cluster edges from a central column of pixelsrwithin the cluster.

CLUSTER |
This algorithm i the simplest of the three algorithms tesied and its flow chant

is shown in Figure 3. After reading the image into memory, the starting ime 1S
recorded and the image is scanned row by row, scanning the column positions left
to right for each row, until a cluster edge is found or until the end of the image.
If a cluster pixel is found, its position is checked for maximum and minimum
row and column values and recorded. The first pixel found inside of the cluster,

also called the lead pixel, and the previous pixel are examined for gray level. At
this point and to completion of following the complete boundary, these.rules are
in effect (Figure 8). . o R T

1. If the lead pixel location is within the cluster, take one step to the left.

2. If the lead pixel location is 2 background pixel, take one step 10 the right.

3. Stop when you have found the position from which you started following
the cluster edge. e e Y R SRy

Check each step for the maximum and minimum row and column position of
the cluster and mark each cluster boundary pixel as a perimeter pixel by using &
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 (Figure 12). Remove these marked 8.5 connectivity perime

checked in the west direction either until there are no

- i

different grair level from both “h":"baCkaO!md,&end,;ﬂ‘\g;glgsatcg. | &P{ygtu“iig? 8
the starting pixel, the marked perimeter pixels are checked for, havinf aj disgonial
background pixel as a neighbor between two adjacent perimeter pixel'néighbors; -

it ¥ gt P 4 t;etﬁpgi”géla%;ahn’d{t‘e“
as cluster area pixels. Scan the image:between t,n“axunum,_gnd‘jmigtmum Tow an

column positions for perimeter and cluster area pixels; Add the perimetér pixels:

to the area pixels to find cluster: area,‘Store,the. number of perimetet and area ¢
pixels and fill in the cluster pixels with background gray level”Return to'the =i
beginning location of the cluster and continue to scan the image for more -
olsters. If a cluster is found, repeat the process. When the image is completely .
scanned for clusters, the completion time is recorded. The difference between the
start and completion time is the time to process a 256 by 256 pixel }i{(‘hﬁiﬁ
. - : NP : R Tt A 2t

v
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. Wt .
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' “The CENTROID algorithm is different from the contour following routines

in that it always locates the boundary from inside the cluster and its'flow chart is
shown in Figure 4. The image is read into memory and the starting time is "/
recorded. The image is scanned row by row, checking each column position left
to right for each row, until a cluster is found or until the end of the image. If a
cluster pixel is found, the oW is scanned until background pixels are located
(Figure 9). The row value is recorded as the minimum row value and the
beginning pixel position of the cluster is recorded. The beginning pixel of the .

- row is checked as the minimum column position of the cluster and the last cluster

pixel of the row is checked as the maximum column position of the cluster. At the
center column position of the first row of pixels in the cluster, the row position is
incremented by one. For this new row position, the column pixels to the east are
checked either until there are no cluster pixels encountered or until the maximum
column position has been reached, which ever is greater. This column position is
checked for the maximum column location of the cluster. The row is now -

3 cluster pixels or until

more .
the minimum column position has been reached, wbichfeygi} is the least™ This

the center of the minimum and maximum column position, increment down one
row and continue the process above until a row without cluster pixels is located.
The pixels within a window formed by maximum and minimum row and column
positions are scanned, counted, and recorded for perimeter and area pixels. A
perimeter pixel is defined as 8 pixel with a boundary pixel as a neighbor.'Check
minimum row - 1 and maximum row +1 between minimum and maximum *
column positions for g:luster-g'ray level pixels. If any are found, record the”™
location and set a flag. Check minimum column - 1 and maximum column + 1
between minimum and maximum row positions for missed cluster pixels. If any
are found, record the Jocation and set a flag. The flag is now checked. If it is not
set, the area and perimeter values are recorded, the cluster is filled with

background pixels, and scanning of the image for new clusters continues from the

* column position is checked for the minimum column location for the cluster. At
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beginning location of the’previouis cluster. When the flag is set,»ﬁlge‘;arga,_aﬁd "
perimeter values are held in hémory, the known part of the cluster,is filled with'-
background and processing of the cluster starts anew at the recorded location - -

when the flag was set. This procéss continues increasing x,he‘g_r"ea‘aiﬁd, perimeter, -*

values until a flag is no longer s¢t: The areaand perimeter are recorded and the
rest of the ixnage;cominpe_s t0 be scanned for clusters. At the letion of image

scanning, the timé js recorded dnd the results are printed. ~ . ﬁ{fﬁgﬁ*“‘ s
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Boundary is the most complex of the edge following algoﬁr?thms examined --
and its flow chart is shown in-Figure S. The image is read into memory:and the’-
starting time is recorded. The image is scanned row by row, each column * Akt
- position left to right for each row, until a cluster is located or until the end of the
image. When a cluster pixel is found, flag 1 is set to 1 and the pixel location'ig” -*

checked for minimum row and ¢olumn location. The discovered pixel's neighbors

are now checked for boundary pixels. If the discovered pixel takes position O as
shown in Figure 6, neighboring edge pixels are found by subtracting gray level
values of the pixels located at consecutively numbered positions. Pixel value in

position 1 is subtracted from pixel value in position 2. Pixel value in position 2 is

subtracted from pixel value in position 3 and so on until pixel value in position 8

is subtracted from pixel value in position 9. A neighbor is considered an edge if

the subtraction result is ' _1'. The new found edge pixel's neighbors are examined
in this same manner until all of the boundary pixels are found. As each edge pixel

is progressively found, they are marked as. perimeter pixels and checked for

 minimum and maximum oW and column positions for the cluster. There are

some cases in which the current edge pixel can have two neighboring edge pixels.
This case is found in test clusters 9, 10, and 11. For this case, a second flag, flag
2. is set and the location of this second edge point is stored for later processing. A
. series of logic statements are used to determine which edge point is processed as

this new location. If no edge pixels are found but flag 2 is set, the neighbors of
_the pixel stored as the second edge point are checked for boundary pixels and the
~ edge following continnes from this point. If the algorithm finds no neighbors that
can be edge pixels and flag 2 is not set, it is concluded that all perimeter pixels of
the cluster are marked. The marked pixels within the window formed by 5
 minimum row and column, and maximum FOw and column positions are counted
as perimeter pixels. The marked pixels are added to the rest of the pixels which
form the cluster to obtain the area. The cluster pixels are filled with the T
background gray level and the image scan continues from the position where the
first cluster pixel was found. Scanning continues to the next cluster, where the
above process is repeated, or t6 the end.of the image, whichever con;zs fu?t. |
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" Aset of twelve images, as describd in.thé intioduction (Figure 2 Mo o3
analyzed by the three different algorithitis; Table 1 shows the true areaand.s; 1.0,

perimeter, in pixels, for.ach of the clusters examinéd. The true, perimeter;length ..
is measured both in the 4 - connectivity and 8%’ connectivity methods. Figure 7... -

“shows an example of the gigferéﬁ&*‘iﬁ‘{ﬁ‘éﬁﬁfete’r‘pixel,s for 4: connectivity and i

: Palo 4]
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8 - connectivity measurements of the same object. fo Ve g Laly sl CRRY G

£S5 3

Tables 2-4 present the measurements ‘done by each of the three algorithms. . =
The output of each algorithm is the measured area, measured penmeterand,: : ?
processing time.The three algorithms determine the computed area without any
errors. The area is determined from'a window of minimum row and column and
maximum row and column locations. Protrusions in a cluster such as those in test
cluster number 11 create a problem for algorithms CENTROID;and _ 3 T
BOUNDARY. Each row, in fﬂibﬁM’.CﬁNTRom.'is scanned right to left until
background pixels are found, ‘the column of background pixels between the ;- *
protrusions of test cluster 11 stops the scanning before the correct column, thus. ’
creating a window smaller then the real window size. Algorithm BOUNDARY. .
has a problem dealing with narrow background columns since along such - .
columns each pixel could have a few neighboring edge pixels. BOUNDARY and
CENTROID are programmed to take that into account and override such
situations. Those additions to CENTROID and BOUNDARY complicate both
algorithms and increased processing time per test cluster. ST
As for cluster perimeter, Figures 8,9 and 10 show the typical performance
of the three examined algorithms. While algorithms CLUSTER and BOUNDARY .
follow the boundary of the cluster in a clockwise path, algorithm CENTROID
moves from row to row. Table 5 lists the differences between'the measured and
calculated perimeter for the test clusters. A t-test was performed (Table 6) on -
each of the columns in Table 5 to prove that there are no significant di
between the measured and calculated perimeter lengths for each of the three

SR Ep T

hat test clusters 5,8,9,10and 1127 ¢

algorithms. Inspection of Table 5 shows
caused minor problems related to perimeter measurements. Algorithm
CENTROID can not handle background islands within a cluster, as in test cluster
5. It determines island borders as additional perimeter pixels. BOUNDARY has
difficulty with one of the island clusters because of its close proximity to the
border. All three algorithms have error estimating perimeter length for clusters
with narrow background columns (test clusters 8, 9, 10, 11). Those columns
should have been counted twice but instead they are counted only once because of
the need to mark a perimeter pixel after it is selected. o B
Algorithm CLUSTER marks some 8 - connected perimeter pixels (striped
block in Figure 8). To determine an accurate estimation of a 4 - connectivity
perimeter, the marked 8 - connected perimeter pixels are changed back to regular
area pixels before the perimeter pixels are counted.
Time efficiency of CLUSTER and BOUNDARY was very similar (Figure
11). A disadvantage of algorithm BOUNDARY is that the number of calculations
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per pixel, while following the contour, is almost always fixed where as the
number of calculations per pixel for CLUSTER changes according to the location
of the next perimeter pixel. In addition, the maximum number of calculations per

-

pixel for CLUSTER is lower because;of simplicity of the ‘algorithm.-When the'.

tost clusters are complex (test clusters 2, 3,9, 10; 11), CLUSTER is less efficlent

AN Y -
5!

because of the need to scan the window.for marked 8 - connected perimeter -yt .

S

pixels which have to be changed back to, regular area pixels:Time efficiency.of ;.

A XX
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CENTROID is the poorest of the three algorithms because of duplicated - - 207
rations when the rows of the clusters are scanned from right to left to find the
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* The results for a t-test found no significant differénces between measured and
calculated perimeters for three tested algorithms, CLUSTER, CENTROID; and ;;; .
BOUNDARY. The test cluster areas were all correctly measured. CENTROID is --
the slowest algorithm, ing at least twice as long to process each cluster. None

of the algorithms can handle clusters which have the same perimeter pixels
forming two different boundaries. The marked perimeter pixels are not counted
cwice (test clusters 8, 9, 10, 11). CENTROID interpreted the island pixels in test
cluster S as perimeter pixels. BOUNDARY counted one of the two islands in test
cluster 5 as perimeter pixels because of the island’s close proximity to the

cluster’s border. The results prove that algorithms CLUSTER or BOUNDARY
are recommended for use in general applications where geometric features are
needed. If one is interested in an 8 - connected region as the estimator for . -
perimeter length, simple logic has to be added to the algorithms. The basic idea -
would be to scan the window and look for any pixel which has 4 - connected
perimeter neighbors on two adjacent sides and has a diagonal bac];ground .
neighbor (Figure 12). It should also be understood that if estimation ofthe

smooth (continuous) original perimeter is desired, one has to use a compensation
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Table 1: Actual measured area and perimeter of test clusters.
Cluster | Area (pixels) Perimeter (pixels) | Process Time (sec) | Cluster Process Time

116

32

1.16

0.028 -

390

138

1.81

0.093

392

136

1.87

0.094

152

N

-

1.32

32

1.16

1162

2x2

- 1.43

232

e

+ 1.43

1
2
3
4
] 108
6
7
8
9

B I
232 R 62-.;°’3: ".,. . _,!1793 .~ e, 0.055
376 117 Seszl 0 181 I

10 416

112

1.81

n | 38

113

-..1.87

| 009

. b S
2 | O 0 88 | T uwmE
- P . bl L
Table 2: Pérformance of CLUSTER. - .
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Table 3: Performance of CENTROID.

Cluster | Area (pixels) | Perimeter (pixels) | Process Time (sec) Cluster Process Time
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perimeter for the three algorithms.
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pigital images -of ,reflf_ﬁc;:ed~ 1ight in both the near: - infrared :(NIR)" .o .
" ‘and visible wavelengths from the surface of bruised and unbruised Golden . =y
Delicious . were captured for -classifying bruise damagé.. ‘Each; of the -~
attributes of two: models  for color. representation;, RGB .and HSI, . were
compared to NIR for their ability to discriminate bruised from unbruised .
tissue. The surface reflectance for good tissue decreased from the fruit .-
center outward, except saturation which increased. Reflectance of good
tissue also varied adjacent to the bruised area compared to a location
60 degrees away. NIR, green, hue and red were the features which showed
the most contrast between ‘pruised and undamaged .tissue. This contrast
did not decrease for green, red, and hue as storage time increased.

. ) : R S

: L oanyEt

INTRODUCTION

The appearance of a Golden Delicious apple is the primary factor on.
which the consumer makes a purchasing decision. The consumer expects
bruise and blemish free fruit. The eye is a sensitive sensor of spectral
reflectance from the apple surface to judge overall quality. As the
technology becane available, it was only natural for scientists to
pneasure surface reflectance to quantify apple quality and raturity..
Early work used the spectral. reflectance for wavelengths fr m2400, -
700nm to characterize changes in color as the fruit-matures.='“ This-
information was used to measure ripeness .on Golden Delicicus.” The
values were co‘{werted to CIE chromaticity values and correlated with
picking dates. - . . '

o <] o~

Mechanical injury of Golden Delicious apples can result in softening
and discoloration - of . .the . tissue . under the “-apple's skin. «The"
discoloration or browning of fruits 51% ascribed -to the oxidationfand-~c. .

’

polymerization of phenolic compounds.. Unlike red cultivars which-tend> m:-
to mask the browning, the partially translucent yellow-skin of Golden:sf”
Delicious apples allows the browning to show through !the skin ‘in sharp - =
contrast to the uniform fruit color. 'Spectral reflectance at 600nm was =¥
used to measure browning ‘on Galden Delicious apples and was correlated = -
with time and temperature. Discoloration was expressed_ as the

difference between normal and injured _tissue reflectance.’ Golden

Delicious were found to discolor érratically and more slowly than other

49



‘.- apples :with known bruise

cultivars ang temperature was found to have 1ittle effect on the rate
of browning.’ The reduction in surface reflectance betwveen normal and
bruised tissue for Golden Delicious was found to be about 8§ compared
to 11% for red cultivars such as Red Delicious and McIntosh. Surface

reflectance using wavelengths between: 700 -~ 2200n§ was reduced for-

bruised compared to normal, Golden Delicious tissue.™ The signifigance
of this finding is that it removed color ‘variations from the reflectance
measurement for bruised tissue. The reflectance properties for peeled

e
.

and unpeel;d Golden Delicious were found' for the wvavelength range: 350 -

‘to 800 nm.” All of the above surface reflectance measurements were made
with spectrophotometers and would not be applicable to high speed
measurement required in packing lines.™

Pl edii, & I -

Digital image procesging‘té‘;s de\‘relbvp’éd'té":ﬁeasure surface reflectance
over the total fruit surflaoce to find areas of lower surface reflectance
which could be bruises.”  This method could rapidly measure surface

reflectance of a stream of apples on. the: packing 1line. Linear

discriminate .classifiers: vere c&’ebtemined_by' ‘using & ‘training set. of .
D predicting ‘bruised -tissue on Golden :

‘areas.

pelicious ' apples ‘. by’ .measuring “the  NIR. ~surface *.reflectance . for

-.wavelengths -between: -750nm to’.850nm ‘showed  correlations - to. actual

bruiisihg"'ﬂ)f :0.22 compared to: 0.72 .or better " for . Red- Delicious and

. McIntosh.”~ When the apples were cut after. testing, a ‘layer of good
tissue cells was found just under the skin of the Golden De,]f.&ious:
unlike Red Delicious and McIntosh which had damaged cells. This

observed reduction in surface reflectance in both the visible and NIR'

wavelengths for bruised tissue on Golden Delicious apples leads to the
objective of -this research. An automatic detection system to size and
find defects on Golden pelicious apples using -data reduction enabled

apples to be scanned. at a rate of five fruit per second but could not;.'-.' :

separate bruised fruit.

T e -

- OBJECTIVE . .

Examine digital imaging of diffuse surface reflectance both in the
visible and NIR spectrums as methods for detecting bruises on Golden
Delicious apples. Determine which features of reflected 1light
(NIR,RGB,and HSI) are the most effective for detecting damaged tissue
on Golden Delicious apples before and after storage. ~

-

MATERIAL AND METHODS

Two samples of 88 Golden Delicious apples were hand harvested in mid-
September during the 1991 harvest season at the Applachian Fruit
Research Station in Kearneysville, %V. Each apple was -placed in tray
packs and stored in a cold room at 1~ C until needed for ‘testing. A 13
mm diameter steel disk was droppedoonto the surface~of each fruit.=<
Samples were held for 24 hours at 20" C to allow full bruise development
and then digital images were captured (time 1). Thereafter, images were
grabbed twice at one month intervals (time 2 and time 3). The appleﬁ
were removed from cold storage 24 hours prior to imaging and held at 20
C. R B ot . T s

A slightly translucent 'a_rc:ylig'rblastic diffuser mounted in front of .

PR NI VYUY of BN T Syt
v TE .
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L snlrEmABO G ey ciee o

_eight tubular tungsten lamps (1Genera1 Electric 40A, 40 W) moupééd' in

' the apple lighting chamber provided uniform diffuse fllumination of the

i‘ apple surface. . Lm. '}....w ;: ] ;.e..u:..{.uiu.;; -~ .:‘5,‘, * i }1,:;;&3‘_” LRAY Q&; G SHTTRI T »E

- R “Far TR SWL L WRBIRIS L edes nd s BiavEan R S
Colot images of one sample, Of ‘88 ‘apples were -acquired ibyraigitizing zei is1,

the output from' a 'Rs'-_-l’l,p";'gp}iajsgagéﬁ"_’Qméfi'."ﬁz A*DECZTPS ¥ (Kontron 2l

{ Electronics) image processing ‘system connected ‘to'a Microvax IT-(Digital Lerg !

- Equipment Corp) 'was used® to*acqiire £{RGB *'color -images.” Thé DECZIPS Sk i
i consisted of a ‘frame grabber, image’ processor, video ‘memory,>-and-image S5 .
processing software.' A’ 25mm “lens’ with an aperture -:set at "£4.0 fwas “Hr ~
mounted ' to a color 'CCD “camera”’ (Model:- M-852, "Micro +Technica).* To" - -F

~ *

standardize images from one-date:’to another,” thé‘gain“for-each®color: =~
band was adjusted while viewing a Teflon ‘eylinder.~Each¥color ‘bandiwas = Rt
independently adjusted ‘to a mean grey’ level: red-142/“green-199, blue- ¥
. 189. The RGB images were transported €6 'a PC-based system’ equipped with"®.¢
a frame grabber (\D‘I‘2k871),*‘frqm;e_‘ processor (DT2858);%and-a

o

“1ibrary-ofsi

o

image processing functions (AURORA, Data ‘Translation*iInc.,) where:they LERE
where converted to HSI color images.. S ERLDLVESY SUFTEEE S0 FE QLIRS ;m&m

: NIR ‘images were acquired of .a’secohd saiiple of 88 apples by digitizing .- "

. the RS-170 output of.a CCD array camera’ (Model 4810, COHU Electronics). " .-~

A PC-based system. equipped with -a frame grabber "(DT2851),° frame - =~ .|

~ processor (DT2858), and image processing library functions (DTIRIS, Data -
‘Translation Inc) captured. the NIR images. A 25mm lens with ‘an aperture
set at fl.4 was mounted to the camera with-a long pass filter (Kodak
Wratten 89B) placed in front of tl'he lens to limit the light viewed by

the camera to the NIR wavelengths. ' ' - i

Two 512 vVertical pixel x 512 horizZontal pixel images of ‘every apple .
were acquired; one with the bruise ceritered on the axis -of the lens and -

. a second with the bruise rotated (about the apple's stem/calyx axis):60-*

degrees away from the lens axis displaying only undamaged tissue. - R

T

' Image processing of ail”of the .jmages’ consisted'‘of “interactively ~* <
locating and recording the location of the center of the bruised area.” = ~
The mean pixel value (0 to 255) of pixels at 1 degree ‘intervals 'about

the circumference of three concentric rings of three different diameters

were recorded. Figure 1 shows the location ‘and relative size of the .
three rings. Ring ‘1 had a fixed diameter”of 10° pixels.’Ring“2 had’ an’3_**

approximate diameter equal to the ‘bruise ‘diameter “(80-90 pixels: or®20-" 7
25mm) minus 25 pixels. Ring 3"had an approximate diameter-equal”to’the’ ¥V
bruise diameter plus 25 pixels. The mgan pixel values for’both bruised *. "
and unbruised tissue (apple rotated 60") centered on the location of the .
bruise center were recorded for NIR, RGB, ‘and HSI Golden Delicious apple” "~
images captured at the three different storage times. ™, Frrokad asowE B
e ’ e RSO I Satt. By wadl - o wmimt TSy (ATYH FEAckIglve
RETI L Lawsn T eldspiiioslb o onve 3y sidur  nLESY  2ELe -
' : BI3 Bopernel .

P

SRRV SR S S Y % S e
4 1 2 - i I ! . het vt gt Lk N e & % LT s Wi
.+ .Mention of specific products ‘is for the .;nﬁ&métion of the ,fi

rea}der only and is not- considered an endorsement by’ Cornell
University, USDA-ARS, or the authors. '
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RESULTS AND DISCUSSION
1 . e Tt T ‘ A v AT B At 3 SN etk
r . t- kS - T ’ N LIRS T SR P AR o i -
To determine the variations in reflectance from the’ ié"urfaéé‘;’*at" the
apple's center outward to the apple's edges, a two sample t-test was ]
performed to determine if.the mean pixel values of.the three concent;ric‘sc,)
rings located on unbruised tissue are different from each other. Figures ™, . .
2 and 3 show the mean pixel values of .unbx:'ui.sed_,&t:is__su'e‘5 .fgg,th'e,threg.
rings located at 60 degrees to.the bruise center: It was found that the... . .
means for ring 3 were significantly different from means,of rings. 1 and’ %,
2 (p<0.01), specifically higher for NIR,. green,’ blue, hug}if saturation |~
and intensity and lower for red. The same test was performed on rings
1 and 2 (0 degrees), bruised tissue, which determined that the means for ., .
NIR and .hue were significantly.different for; the] two .ring .sizes ".. .
(p<0.05) ..; For all tests rexcept saturation, as .the.’ rizng,,,diametef,,},{:}’d;'
‘increased, there was a -trend of the’ mean, pixel "value 'declining.-" .
Saturation showed the reverse, as the ring diameter increased, the mean’ .
' pixel value showed an increasing trend. Therefore, there.is-a geometric -
- effect because of the ‘surface curvature of ‘the apple,. [ .3 [y~ -~ | .54

A

The reflectance variability of undamaged tissiie values around each ;.
" fruit may. vary from location to'location. The mean pix,el:w.'}_ldlues{'of;the':".“’ KRN
. ‘two largest rings (ring 3 at 0-and 60 degrees) weré compared. Comparing '
the mean values for these rings in Figures 2 and 3 shows that the mean
pixel value for red, green, blue, hue, saturation, and intensity for
unbruised tissue was significantly different (p<0.01). This test showed
that there was less red, more green, more blue, greater hue, less
saturation, and more intensity on the unbruised side of the sample
compared to the bruise side.. The sample could have been by chance a
different color on one side compared to the other .or. there could be
effects on. the reflectance from the large ring of undamaged tissue.
‘around  the bruised area caused by internal interactions in undamaged

cells adjacent to bruised tissue. .. S e T

‘Because of the reflectance difference from the smallest (ring 1) to .
the largest ring (ring 3) and the variations found for the.two large
rings spaced 60 degrees apart, it was decided that the best-contrast for
comparing bruised and undamaged tissue would be found between ring 2
inside the bruise and ring 3 located just outside and concentric with
the bruise. Figure 4 shows the mean found by averaging the.difference ...
of the mean pixel values of the two rings for each apple. The standard ...
deviations are also shown,. A t-test was performed,to.see which mean had .
the greatest difference 'from 0. NIR 'was found to have the greatest
difference, followed in descending order by hue, .green and red.
Saturation, blue and intensity were found to be different from 0, but.. -
. by a much smaller t-value caused mainly by .their, K large standard ...

deviations. NIR, green, hue and red show the most promise as reflectance
features which could be used to discriminate between bruised and
. undamaged tissue.

.

Figures 5 and 6 show the changes for the reflectance features for
bruised and undamaged tissue for ring 2 and ring 3 over -a two month -
period. NIR reflectance for bruised tissue increased in the first.month
of storage to a value nearly equal to undamagéd tissue;;NIR reflectance :: .

B ¢ L € A £t LS 4 SLE G ) 4

-
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for undamaged tissue varied only sliéhél‘%ﬁg?\’rex{' the sanme period. The mean ‘..

pixel value for bruised and.unbruised.tissue .increased equally for red

e

and decreased equally .for hue.:The ;,‘di_ffe;'egces‘ in ipﬁixe}f;x?q};ge,s }gégqeén 3T s
damaged and undamaged tissue. ‘gpggthéglgfj;twﬁ *'features: -:@q’ige@?bggggant?ESM- o
over the storage period.’ Blue, * gaturation, ‘and" 1ntén,'s;;1:§f‘%§“spowe‘dfi{a%% ‘
reduced. contrast. between. pixel:values for, bruised and unbruised tissue. et
Green ‘showed a.decrease;in , mean. pikel Values_for ;-_3;i,mej;sz‘?g‘o;'ff\fljnb;fhi'sgd-5" A
tissue and an equal value.for pruiseditissue.’ This- eéu}§e¢%i’iji"f§§*}oﬁerf=r
difference in contrast between the tissue types for time ’?24‘-;dn1‘yi‘ “Times .

3 showed the same contrast between bruised and undamaged tissue as time

t N

1. The color features ,of .xred, ivq::_egh,;;_ahdlhne.,}ar'e not.effe&ted"%a’ls much *

AR TR

py storage time as NIR. These features maintained a difference .between.

...... ry

bruised and unbruised tissue over the total storage *time’*and 'may*bes"

. * * ,‘,"g:_,,__.a::‘-u .
. PR T Lk

possible : features : to ~form a_E.,disqriminat;g,},function for identifying
ke Tl yeamallt oI o EOIE XODI0E TLE T

i -e b

> 2‘14,’-“1r" TR
- .I:.‘.‘..’s::, b fY«i!

bruising :on -stored Golden Delicious.’iy.. A s

cowp ey TS be-ammaaed . ST B el
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. ‘surface reflectance for Golden. _De'l-;lq:_.qus’ was' _.founqgt'g. “decrease %
significantly - from the fruit center outwards. for the* reflectance- .

_features..of NIR, red, green, blué, hue, and intensity. ‘Saturation. was

‘.

found to increase. T T R
‘ i ) 8 . . PRl N e b ¥ o

. 2 ¥
PR .

" -

A color. difference for good tissue was found between two locations,
one concentric about the bruise and the other 60 degrees apart. From the
data collected it was not possible to tell if this difference was an
interaction from the bruising process in good tissue adjacent to bruised
tissue or was a natural color variation. A

NIR,:-hue, green, and red were more .effective .for discriminating
‘bruised from undamaged tissue. Large variations in surface reflectance
~for Dblue, saturation, and intensity reduced ‘their. ~discriminating.

Red, green and hue, unlike NIR, did not show the increase _ in
reflectance with storage tirne. These features could be used to form a
discriminate function for identifying bruising on stored Golden
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Imaging in the near-i_iiggr:é(‘1,'“;"1-'eglicl’n_;lf§sf'yﬁeﬁgn‘udéd :frequently-toxdetect bruises
on 'Delicious’'.apples. .g_ggglgliﬁigggé}t;};esfgpgmll_)__rui'sed and nonbruised:regions iggzy
within an image.of qun;qpp]_gq*fgre compared to“characterize the time effects.: & %m;

Near-infrared reflectance from a brulsed ‘sité¥is?generally lowersthan'thenxy ,sage

reflectance from a mearby monbruised regloni “This-difference usually reaches.d..
maximum 24 hours after inducing the bruise. As the bruise ages in-storage,:;.:--:
reflectance from the bruised region increases. The reflectance continues to
increase and eventually exceeds the reflectance from a nonbruised region.

1, INTRODUCTIO

Despite a decrease in the number of acres planted, commercial apple production
continues to increase. This additional fruit may require automatic handling and
harvesting systems. With the use of mechanical systems, there is a higher ‘
probability that the fruit will be damaged in the handling process. Therefore,, a
need exists for an eff;ciept,_method for de;e{cﬁins and removing damaged fruit. -

i i . ) D 5 T S A R __<§£'TL
_ Since the late 1960°'s, researchers have tried various techniques for.. . - f
distinguishing bruised from nonbruised apple tissue. There is a decrease in th
level of x-ray energy transmitted through bruised apple tissue when compared to
nonbruised tissue S, 16, ypchurch et al. ;3‘investigated ultrasonic techniques
for distinguishing bruised from nonbruised areas. This technique was based on
differences in the acoustic impedance; however, “fruit -properties such as cuticle .
and air wvithin the tissues prevented the'technigque from being -guccessful gemt =i
Differences between bruised and nonbruised apple tissue were detected with~  «:1,
microwave reflectivity, thermal conduct;iy:lty,‘""conductance,' and tissue > a@g.u.
compressability7. . However, none of the techniques were successful, ‘because :of ;the
wide variability within a single apple and between apples. Danno et al. 3 used
thermal :imaging to detect’__tempétature differences between damaged:and non-damaged
regions on apples. When tissue is dama'ggd,“‘a‘j"chemical5reaction.is -initiated;that -
results in a temperature increase in’‘the region. This technique was ‘moderately -+
successful when the fruit ‘temperature was Elossly controlled,. I agrerame.
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Visible and near-infrared (NIR) reflectance differences between bruised and
nonbruised apple tissue has been the most frequently investigated techniques.
Freshly bruised apple tissue has a lower‘reflectance in the visible through; . .. -
near-infrared . wavelengths, 2, 11, These earlier observations were_expanded by
defining specific wavelengths for distinguishing bruised from nonbruised regions’
on peeled apples 1, 8, That study was restricted to the wavelength region between
350 and 700 nm. Successful application to nonpeeled apples would be limited by
the interference from anthocyanin in the peel. Bruises on unpeeled fruit wvere
detected at wavelengths between 750 and 850 nm 15, These methods had success but

_were limited to small inspection areas (19.6 mmz).
S
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Utilizing advances in computer vision technology and the near-infrared
reflectance differences between the tvo tissue types, a more complex approach vas
gnitiated, Digital imaging with statistical pattern recognition located bruises
on wvhole apples by detecting differences in the diffuse reflectance betveen
bruised and nonbruised regions on appleq,ﬁ,}, A line scan camera replaced the
matrix camera in order to 1imit the pixel-to-pixel 'variation to one:dimension 9,
13, pehkugler and Throop 9 incorporated machine vision into an automatic sorting
system for appleo. : The design of the apple handling system had a _mechanism for
orienting and presenting the fruit for, inspection by a 1ine scan camera,- “Based on
the thinness-ratio of the binary clusters vithin an image;* apples were ‘gorted into
four grades 10, Attempts to sort apples without orientation on a commercial line
were unsuccessful; hovever, detection of very severe bruises had 1imited-success
vhen apples were placed by hand on a conveyor with the stem-calyx axis
perpendicular to the direction of travel. Yo A

As shown by previous research, automatic bruise detection 18 a difficult
problem caused by the wide variability in reflectance between apples and vithin a
single fruit. ‘Temporal factors have mnot been formally analyzed. - As the druise : .
ages, the reflectance from that region changes 2, 6, The'objective of this fesdrdy
research was to evaluate time effects on ‘the NIR from bruised and nonbruised:-. °”

regions on apples. : S T
toee £L

2. PROCEDURE

'Delicious' and 'Golden Delicious' apples were hand harvested in mid-September
during the 1991 season at the Appalachian Fruit Research Station in Kearneysville,
WV. A total of 64 fruit for each varlety wvere placed in tray packs and stored in
a cold room at 0°C until needed for testing. Each fruit was bruised by dropping a
39 mm diameter steel disk onto the surface of the fruit 24 hours prior to the
first inspection date 15, Theoretical impact energy was 0.81J. Samples vere held
at room temperature, 20°C, for 24 hours to allov for bruise development., For each
sampling date, fruit vere removed from cold storage 24 hours prior to inspection. .
Fruit vere inspected at monthly intervals for three months beginning in Rovember.

Images of apples vere acquired and analyzed wvith an image processing system
and solid-state camera. A PC-based system equipped with a Data Translation® frame
grabber (DT2851) and frame processor (DT2858) vas used to acquire the images.

- Images were transferred to a VAX 4000/200 (pigital Equipment Corp.) and analyzed
with image processing softvare from Buclid Computer Co. A CCD array camera (iHodel
4810, COHU Electronics) without the infrared blocking filter was used to acqguire
images of the apples. A 25mm lens with an aperture set at ‘£1.4 wvas mounted to the
camera. To limit the reflectance from the apple to the NIR region, a long pass -
filter (Kodak Wratten 89B) was placed betveen the camera lens and the apple. - Two
images of each apple vere captured. The bruised region was centered in the- '
jnitial image while a second image vas acquired after rotating the apple 135° so
that ‘the bruised region vas absent .in the image. To maintain equivalent - tantey;
measurements betveen dates, a reference image of a vhite teflon cylinderivas‘iﬁ
acquired at four times on each date. ) ' a " N LS

':ﬂ - . 3

The mean value of the pixels arB‘\;ndJ; circular profile at 1° intervals vas a
measure of the intensity of near-infsg_red reflectance (NIR) from bruised and”

aMention of a tradename or company_doﬁb'hot:’;ndo:se the use of the productéfbysthe

United States Covernment or Cornell University. . : A Iy 3% §
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nonbruised’ regions.: s Three concentric circles:vere used (Figure 1). . . cItiesy
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Figure 1. Diagram of apple shbwing relative size and locations of the circular
profiles on the bruised side of the apple. Profiles, sizes and
locations were determined by interactively identifying the center and

outer diameter of the bruise.
To define the location and size of each circular profile two sites were . . o e
jnteractively identified in the image. Initially, the center of the bruised
region was interactively jdentified in the image and used as the center for each
concentric profile. Next, the outer edge of the bruised region in the x-direction
was identified interactively. The diameter of the middle profile was twice the
difference between the center:and outer :location minus 30 pixels while the outer, .
circle had a diameter twice the difference plus 30. The smallest circular profile’
had a constant diameter of 10 pixels. After measuring the mean gray value around
each circle, the three profiles were applied to the nonbruised side. Each mean
value wvas divided by the mean of the profile for the reference and then mult.i*;?lied

by 255. L, e G waF Lo

3, RESULTS
‘42t FLa IC‘Q&

Time after bruising had a significant effect on the NIR from bruised and
nonbruised regions on both 'Delicious' and *Golden Delicious’' apples. -Comparing a
linear profile that dissected a bruised region, the reflectance from a bruised ..
region decreased to minimum level with time (Figure 2). During one month in-
storage, the reflectance from the bruised regions increased to a level equivalent ..
to the reflectance from nonbruised regions. -This increase 'in reflectance . = 7
continued until the reflectance from bruised.regions exceeded that from nonbruised
regions. Reflectances from 'Golden Delicious' exhibited similar changes with
time. For each test date, the significance of each circular profile was tested
with a mean separation by SAS GLM contrast :(Table. 1l and 2). The two. profiles from
the bruised regions vere significantly different (Pr ¢ 0.05) from the noixbruf’s'élgl:t ;

- s
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profiles for the’'24 hour 'test, This difference occurred for both .'Delicious’: and
‘Colden Delicious' apples. For both varieties, there vwao no difference between
the four nonbruised profiles. After one month in storage, the mean reflectance
from bruised regions {ncreased to a level vhere there vere no differences betveen
any profiles, exception vas the large profile (nonbruised) on the bruised oide for
the ‘Colden Delicious'. A significant 41ffe:pnce—oﬁ1y~egieted for the middle
profile from the bruised region for the third test date on 'Delicious’. . However,
there were no differences between the profiles on ;!Golden Delicious' for the final
date. t Y ound o L \ _ : :
{ R L } :

Table 1. Effects of time on the reflectance from bruised and nonbruised regions

on ‘Red Delieiouq' apples as measured by the mean gray-level of .

«

circular profile.. - -~ ==t &7 14
. ibg ~.‘fij
Profile ‘ TEST DATES =
Size Nov - pee ™~ Jan
Mean Std £ r{Hean Std -7 Mean Std
BRUISED SIDE
small 2318 8.0 2358 6.5 2448 4.1
medium 23028 8.4 2358 7:3 2470 3.8
large 241 7.6 2388 5.0 2428 3.7
NONBRUISED SIDE
small 244d 7.5 2428 5.0 2448 4.9
medium 243 7.5 2418 5.1 2448 4.5
large 242 7.5 2393 4.8 2432 4.4

#Means with the same letter are not significantly different at the 95% confidence
level.

P

Table 2. Effects of time on the reflectance from bruised and nonbruised regions
on 'Golden Delicious' apples as measured by the mean gray-level of a

circular profile.

Profile TEST DATE . ;
Size Hov Dec Jan o
Mean Std HMean Std Mean Std
BRUISED SIDE '
small .238¢ 8.0 244) 6.5 2448 4.1, -
medium - 237¢ 8.4 2469 7.3 . - 2448 3.8 - .. .
large 2468> 7.6 ‘2468 -7 5,0 .. 2448 3.7 .5 .
) * . : el ' R S R
NORBRUISED SIDE : A RTINS R : . .
small . 2478 7.5 2440 97 5,0% .- - 2438 4.9 ;.
medium 2463b - 7.5 244d. 5,1 - - - 2428 4.5. . ~.__
~ large 249> 7.5 2453 2. 4.8 2432 4.4

. ¥ e
- e Fo

#Means with the same letter are not significantly different at ‘the 95% confidehce.
level.' WA A 3 2 AU YA ST NS 1 S S
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Figure 2.

Typical pixel intensities across a bruised section on an apple.
point in the ‘1inear profiles was the average of six adjacent pixels.
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Figure 3.
bruised side of the fruit.’

-reflectance from the. bruised, region was greater
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A negative difference indicated that® the
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Automatic bruise detection by machine vision depends upon the ability of the
system to detect spatial and magnitude relationships betveen groups of pixels.
The maximum difference in reflectance betveen bruised and nonbruised areas on
'pelicious' apples was 12 gray levels vhich corresponds to a ‘5% decrease in - - -
reflectance (Figure 3).. This maximum difference occurred betveen the larger two - -
profiles on the bruised side. For,the.64.'Delicious?‘appleof-theimean difference -
was initially 11,3. This mean difference decreased to 3.5 .in Decémber and -4.5 in -
January. A negative difference indicated that -the reflectapce'frgh‘the bruisced .
region was greater than that-from the adjacent nonbruised site, -Hean differences

among the nonbruised regions weremvithin'z1gray—1evels for allgthﬁge test dateo.” -

Rear-infrared refleLtance from bruised regions on 'Delicigua'fﬁnﬂ 'Golden
pelicious' apples changes with time, while the reflectance from nonbruised regiono
remains relatively constant. ‘"This change in reflectance is critical vhen machine
visions systems are designed to automatically detect;b:uisgg‘bn apples. An
automatic bruise detection system must be able to detect bruises of various age.

. However, the task is more complicated by the fact that the amount of light
reflected from the bruised area varies vith time. :
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