נגישות
menu      
חיפוש מתקדם
Water Resources Research
Lehmann, P.
Hoogland, F.
Or, D.
Similarity in liquid-phase configuration and drainage dynamics of wet foam and gravity drainage from unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation—SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. The study provides new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions. Two novel analytical solutions for saturation profile evolution were derived and tested in good agreement with a numerical solution of the SFDE. The study and the proposed solutions rectify the original formulation of foam drainage dynamics of Or and Assouline (2013). The new framework broadens the scope of methods available for quantifying unsaturated flow in porous media, where the intrinsic conductivity and geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches
פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
The foam drainage equation for drainage dynamics in unsaturated porous media
53
Lehmann, P.
Hoogland, F.
Or, D.
The foam drainage equation for drainage dynamics in unsaturated porous media
Similarity in liquid-phase configuration and drainage dynamics of wet foam and gravity drainage from unsaturated porous media expands modeling capabilities for capillary flows and supplements the standard Richards equation representation. The governing equation for draining foam (or a soil variant termed the soil foam drainage equation—SFDE) obviates the need for macroscopic unsaturated hydraulic conductivity function by an explicit account of diminishing flow pathway sizes as the medium gradually drains. The study provides new and simple analytical expressions for drainage rates and volumes from unsaturated porous media subjected to different boundary conditions. Two novel analytical solutions for saturation profile evolution were derived and tested in good agreement with a numerical solution of the SFDE. The study and the proposed solutions rectify the original formulation of foam drainage dynamics of Or and Assouline (2013). The new framework broadens the scope of methods available for quantifying unsaturated flow in porous media, where the intrinsic conductivity and geometrical representation of capillary drainage could improve understanding of colloid and pathogen transport. The explicit geometrical interpretation of flow pathways underlying the hydraulic functions used by the Richards equation offers new insights that benefit both approaches
Scientific Publication
You may also be interested in