Journal of Plant Physiology
Erel, R., Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Bet-Dagan, Israel, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
Yermiyahu, U., Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Bet-Dagan, Israel
Ben-Gal, A., Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Bet-Dagan, Israel
Dag, A., Institute of Plant Sciences, Gilat Research Center, Agricultural Research Organization, Bet-Dagan, Israel
Shapira, O., The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
Schwartz, A., The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
Potassium (K) is an essential macronutrient shown to play a fundamental role in photosynthetic processes and may facilitate photoinhibition resistance. In some plant species, sodium (Na) can partially substitute for K. Although photosynthetic enhancement has been well established, the mechanisms by which K or Na affects photosynthesis are not fully understood. Olive (Olea europaea L.) trees were previously shown to benefit from Na nutrition when K is limiting. In order to study the effect of K and Na on photosynthetic performance, we measured gas exchange and chlorophyll fluorescence in young olive trees supplied with either K, Na or no fertilizer, and subjected to manipulated levels of CO2, O2 and radiation. Light and CO2 response curves indicate substantially superior photosynthetic capacity of K-sufficient trees, while Na substitution generated intermediate results. The enhanced performance of K, and to a lesser extent, Na-supplied trees was found to be related mainly to modification of non-stomatal limitation. This indicates that K deficiency promotes inhibition of enzymatic-photochemical processes. Results indicate lower chlorophyll content and altered Rubisco activity as probable causes of photosynthetic impairment. Potassium deficiency was found to diminish photoprotection mechanisms due to reduced photosynthetic and photorespiratory capacity. The lower CO2 and O2 assimilation rate in K-deficient trees caused elevated levels of exited energy. Consequently, non-photochemical quenching, an alternative energy dispersion pathway, was increased. Nonetheless, K-deficient trees were shown to suffer from photodamage to photosystem-II. Sodium replacement considerably diminished the negative effect of K deficiency on photoprotection mechanisms. The overall impact of K and Na nutrition plays down any indirect effect on stomatal limitation and rather demonstrates the centrality of these elements in photochemical processes of photosynthesis and photoprotection. © 2015 Elsevier GmbH.
פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Modification of non-stomatal limitation and photoprotection due to K and Na nutrition of olive trees
177
Erel, R., Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Bet-Dagan, Israel, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
Yermiyahu, U., Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Bet-Dagan, Israel
Ben-Gal, A., Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Bet-Dagan, Israel
Dag, A., Institute of Plant Sciences, Gilat Research Center, Agricultural Research Organization, Bet-Dagan, Israel
Shapira, O., The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
Schwartz, A., The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
Modification of non-stomatal limitation and photoprotection due to K and Na nutrition of olive trees
Potassium (K) is an essential macronutrient shown to play a fundamental role in photosynthetic processes and may facilitate photoinhibition resistance. In some plant species, sodium (Na) can partially substitute for K. Although photosynthetic enhancement has been well established, the mechanisms by which K or Na affects photosynthesis are not fully understood. Olive (Olea europaea L.) trees were previously shown to benefit from Na nutrition when K is limiting. In order to study the effect of K and Na on photosynthetic performance, we measured gas exchange and chlorophyll fluorescence in young olive trees supplied with either K, Na or no fertilizer, and subjected to manipulated levels of CO2, O2 and radiation. Light and CO2 response curves indicate substantially superior photosynthetic capacity of K-sufficient trees, while Na substitution generated intermediate results. The enhanced performance of K, and to a lesser extent, Na-supplied trees was found to be related mainly to modification of non-stomatal limitation. This indicates that K deficiency promotes inhibition of enzymatic-photochemical processes. Results indicate lower chlorophyll content and altered Rubisco activity as probable causes of photosynthetic impairment. Potassium deficiency was found to diminish photoprotection mechanisms due to reduced photosynthetic and photorespiratory capacity. The lower CO2 and O2 assimilation rate in K-deficient trees caused elevated levels of exited energy. Consequently, non-photochemical quenching, an alternative energy dispersion pathway, was increased. Nonetheless, K-deficient trees were shown to suffer from photodamage to photosystem-II. Sodium replacement considerably diminished the negative effect of K deficiency on photoprotection mechanisms. The overall impact of K and Na nutrition plays down any indirect effect on stomatal limitation and rather demonstrates the centrality of these elements in photochemical processes of photosynthesis and photoprotection. © 2015 Elsevier GmbH.
Scientific Publication