נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
On-line feature and classifier selection for agricultural produce
Year:
2004
Authors :
אלחנתי, ויקטור
;
.
Volume :
Co-Authors:
Laykin, S., Dept. of Industrial Engineering, Ben- Gurion University of the Negev, Beer-Sheva 84105, Israel
Edan, Y., Dept. of Industrial Engineering, Ben- Gurion University of the Negev, Beer-Sheva 84105, Israel
Alchanatis, V., Inst. of Agricultural Engineering, ARO, Volcani Center, Bet- Dagan 50250, Israel
Facilitators :
From page:
127
To page:
131
(
Total pages:
5
)
Abstract:
This paper presents an on-line hierarchical classifier for agricultural products. The classifier consists of two levels. The first level detects new populations using an on-line clustering algorithm. The second level selects the best-fit classifier using a fuzzy system. This paper presents the combination of the two levels into a complete system. Feature selection is conducted on-line according to the classified population. A synthetic dataset is used to estimate the classifier capabilities and compare it to previous results. Results indicated that the combined online system results in improved classification accuracy.
Note:
Related Files :
Agriculture
Algorithms
Classifier selection
Feature selection
Fuzzy control
Online systems
עוד תגיות
תוכן קשור
More details
DOI :
Article number:
Affiliations:
Database:
סקופוס
Publication Type:
מאמר מתוך כינוס
;
.
Language:
אנגלית
Editors' remarks:
ID:
20323
Last updated date:
02/03/2022 17:27
Creation date:
16/04/2018 23:35
Scientific Publication
On-line feature and classifier selection for agricultural produce
Laykin, S., Dept. of Industrial Engineering, Ben- Gurion University of the Negev, Beer-Sheva 84105, Israel
Edan, Y., Dept. of Industrial Engineering, Ben- Gurion University of the Negev, Beer-Sheva 84105, Israel
Alchanatis, V., Inst. of Agricultural Engineering, ARO, Volcani Center, Bet- Dagan 50250, Israel
On-line feature and classifier selection for agricultural produce
This paper presents an on-line hierarchical classifier for agricultural products. The classifier consists of two levels. The first level detects new populations using an on-line clustering algorithm. The second level selects the best-fit classifier using a fuzzy system. This paper presents the combination of the two levels into a complete system. Feature selection is conducted on-line according to the classified population. A synthetic dataset is used to estimate the classifier capabilities and compare it to previous results. Results indicated that the combined online system results in improved classification accuracy.
Scientific Publication
You may also be interested in