נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci
Year:
2008
Source of publication :
BMC Genomics
Authors :
גנאים, מוראד
;
.
Volume :
9
Co-Authors:
Mahadav, A., The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 76100, Israel
Gerling, D., Department of Zoology, Tel Aviv University, Tel Aviv, Israel
Gottlieb, Y., Institute of Plant Protection, Department of Entomology, Agricultural Research Organization, Bet Dagan 50250, Israel
Czosnek, H., The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 76100, Israel
Ghanim, M., Institute of Plant Protection, Department of Entomology, Agricultural Research Organization, Bet Dagan 50250, Israel
Facilitators :
From page:
To page:
(
Total pages:
1
)
Abstract:
Background: The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and the viruses it transmits, are a major constraint to growing vegetable crops worldwide. Although the whitefly is often controlled using chemical pesticides, biological control agents constitute an important component in integrated pest management programs, especially in protected agriculture. One of these agents is the wasp Eretmocerus mundus (Mercet) (Hymenoptera: Aphelinidae). E. mundus lays its egg on the leaf underneath the second-third instar nymph of B. tabaci. First instars of the wasp hatch and penetrate the whitefly nymphs. Initiation of parasitization induces the host to form a capsule composed of epidermal cells around the parasitoid. The physiological and molecular processes underlying B. tabaci-E. mundus interactions have never been investigated. Results: We used a cDNA microarray containing 6,000 expressed sequence tags (ESTs) from the whitefly genome to study the parasitoid-whitefly interaction. We compared RNA samples collected at two time points of the parasitization process: when the parasitoid first instar starts the penetration process and once it has fully penetrated the host. The results clearly indicated that genes known to be part of the defense pathways described in other insects are also involved in the response of B. tabaci to parasitization by E. mundus. Some of these responses included repression of a serine protease inhibitor (serpin) and induction of a melanization cascade. A second set of genes that responded strongly to parasitization were bacterial, encoded by whitefly symbionts. Quantitative real-time PCR and FISH analyses showed that proliferation of Rickettsia, a facultative secondary symbiont, is strongly induced upon initiation of the parasitization process, a result that supported previous reports suggesting that endosymbionts might be involved in the insect host's resistance to various environmental stresses. Conclusion: This is the first study to examine the transcriptional response of a hemipteran insect to attack by a biological control agent (hymenopterous parasitoid), using a new genomic approach developed for this insect pest. The defense response in B. tabaci involves genes related to the immune response as described in model organisms such as Drosophila melanogaster. Moreover, endosymbionts of B. tabaci appear to play a role in the response to parasitization, as supported by previously published results from aphids. © 2008 Mahadav et al; licensee BioMed Central Ltd.
Note:
Related Files :
Animal
Animals
bacteria
Bemisia tabaci
Gene
Genome
genomics
Growth, Development and Aging
Microbiology
עוד תגיות
תוכן קשור
More details
DOI :
10.1186/1471-2164-9-342
Article number:
342
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
20758
Last updated date:
02/03/2022 17:27
Creation date:
16/04/2018 23:38
You may also be interested in
Scientific Publication
Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci
9
Mahadav, A., The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 76100, Israel
Gerling, D., Department of Zoology, Tel Aviv University, Tel Aviv, Israel
Gottlieb, Y., Institute of Plant Protection, Department of Entomology, Agricultural Research Organization, Bet Dagan 50250, Israel
Czosnek, H., The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot 76100, Israel
Ghanim, M., Institute of Plant Protection, Department of Entomology, Agricultural Research Organization, Bet Dagan 50250, Israel
Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci
Background: The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and the viruses it transmits, are a major constraint to growing vegetable crops worldwide. Although the whitefly is often controlled using chemical pesticides, biological control agents constitute an important component in integrated pest management programs, especially in protected agriculture. One of these agents is the wasp Eretmocerus mundus (Mercet) (Hymenoptera: Aphelinidae). E. mundus lays its egg on the leaf underneath the second-third instar nymph of B. tabaci. First instars of the wasp hatch and penetrate the whitefly nymphs. Initiation of parasitization induces the host to form a capsule composed of epidermal cells around the parasitoid. The physiological and molecular processes underlying B. tabaci-E. mundus interactions have never been investigated. Results: We used a cDNA microarray containing 6,000 expressed sequence tags (ESTs) from the whitefly genome to study the parasitoid-whitefly interaction. We compared RNA samples collected at two time points of the parasitization process: when the parasitoid first instar starts the penetration process and once it has fully penetrated the host. The results clearly indicated that genes known to be part of the defense pathways described in other insects are also involved in the response of B. tabaci to parasitization by E. mundus. Some of these responses included repression of a serine protease inhibitor (serpin) and induction of a melanization cascade. A second set of genes that responded strongly to parasitization were bacterial, encoded by whitefly symbionts. Quantitative real-time PCR and FISH analyses showed that proliferation of Rickettsia, a facultative secondary symbiont, is strongly induced upon initiation of the parasitization process, a result that supported previous reports suggesting that endosymbionts might be involved in the insect host's resistance to various environmental stresses. Conclusion: This is the first study to examine the transcriptional response of a hemipteran insect to attack by a biological control agent (hymenopterous parasitoid), using a new genomic approach developed for this insect pest. The defense response in B. tabaci involves genes related to the immune response as described in model organisms such as Drosophila melanogaster. Moreover, endosymbionts of B. tabaci appear to play a role in the response to parasitization, as supported by previously published results from aphids. © 2008 Mahadav et al; licensee BioMed Central Ltd.
Scientific Publication
You may also be interested in