נגישות
menu      
חיפוש מתקדם
Burstein, F., Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, POB 6, Bet Dagan, Israel
Borisover, M., Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, POB 6, Bet Dagan, Israel
Lapides, I., Department of Inorganic and Analytical Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
Yariv, S., Department of Inorganic and Analytical Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
In the present research we studied the effect of the solvent used, whether it was polar water or a non-polar organic solvent (n-hexane or n-hexadecane), on the basal-spacing and bulk structure of the sorbate-sorbent complexes obtained by the secondary adsorption of nitrobenzene and m-nitrophenol by two types of organo-montmorillonites. X-ray measured basal spacings before and after thermal treatments up to 360°C. The organo-clays were synthesized, with 41 and 90% replacement of the exchangeable Na+ by hexadecyltrimethylammonium (HDTMA), with mono-and bilayers of HDTMA cations in the interlayer space, labelled OC-41 and OC-90, respectively. After heating at 360°C both organo-clays showed spacing at 1.25-1.28 nm, due to the presence of interlayer-charcoal, indicating that in the preheated organo-clays the HDTMA was located in the interlayer. The thermo-XRD-analysis of Na-clay complexes showed that from organic solvents both sorbates were adsorbed on the external surface but from water they were intercalated. m-Nitrophenol complexes of both organo-clays obtained in aqueous suspensions contain water molecules. Spacings of nitrobenzene complexes of OC-41 and OC-90 and those of nitrophenol complexes of OC-41 showed that the adsorbed molecules were imbedded in cavities in the HDTMA layers. Adsorption of m-nitrophenol by OC-90 from water and n-hexane resulted in an increase of basal spacing (0.21 and 0.29 nm, respectively) suggesting the existence of a layer of nitrophenol molecules sandwiched between two parallel HDTMA layers. © 2008 Springer Science+Business Media, LLC.
פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Secondary adsorption of nitrobenzene and m-nitrophenol by hexadecyltrimethylammonium-montmorillonite thermo-XRD-analysis
92
Burstein, F., Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, POB 6, Bet Dagan, Israel
Borisover, M., Institute of Soil, Water and Environmental Sciences, Volcani Center, ARO, POB 6, Bet Dagan, Israel
Lapides, I., Department of Inorganic and Analytical Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
Yariv, S., Department of Inorganic and Analytical Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
Secondary adsorption of nitrobenzene and m-nitrophenol by hexadecyltrimethylammonium-montmorillonite thermo-XRD-analysis
In the present research we studied the effect of the solvent used, whether it was polar water or a non-polar organic solvent (n-hexane or n-hexadecane), on the basal-spacing and bulk structure of the sorbate-sorbent complexes obtained by the secondary adsorption of nitrobenzene and m-nitrophenol by two types of organo-montmorillonites. X-ray measured basal spacings before and after thermal treatments up to 360°C. The organo-clays were synthesized, with 41 and 90% replacement of the exchangeable Na+ by hexadecyltrimethylammonium (HDTMA), with mono-and bilayers of HDTMA cations in the interlayer space, labelled OC-41 and OC-90, respectively. After heating at 360°C both organo-clays showed spacing at 1.25-1.28 nm, due to the presence of interlayer-charcoal, indicating that in the preheated organo-clays the HDTMA was located in the interlayer. The thermo-XRD-analysis of Na-clay complexes showed that from organic solvents both sorbates were adsorbed on the external surface but from water they were intercalated. m-Nitrophenol complexes of both organo-clays obtained in aqueous suspensions contain water molecules. Spacings of nitrobenzene complexes of OC-41 and OC-90 and those of nitrophenol complexes of OC-41 showed that the adsorbed molecules were imbedded in cavities in the HDTMA layers. Adsorption of m-nitrophenol by OC-90 from water and n-hexane resulted in an increase of basal spacing (0.21 and 0.29 nm, respectively) suggesting the existence of a layer of nitrophenol molecules sandwiched between two parallel HDTMA layers. © 2008 Springer Science+Business Media, LLC.
Scientific Publication
You may also be interested in