נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Genetic analysis of the Israeli Holstein dairy cattle population for production and nonproduction traits with a multitrait animal model
Year:
2004
Source of publication :
Journal of Dairy Science
Authors :
ולר, יהודה
;
.
Volume :
87
Co-Authors:
Weller, J.I., Institute of Animal Sciences, ARO, Volcani Center, Bet Dagan 50250, Israel
Ezra, E., Israel Cattle Breeders Association, Caesaria Industrial Park, Caesaria 38900, Israel
Facilitators :
From page:
1519
To page:
1527
(
Total pages:
9
)
Abstract:
Milk, fat, and protein production, somatic cell score (SCS), and female fertility in the Israeli Holstein dairy cattle population were analyzed using a multitrait animal model (AM) with parities 1 through 5 as separate traits. Female fertility was measured as the inverse of the number of inseminations to conception in percent. Variance components were estimated using both the repeatability AM and multitrait AM. The multitrait heritabilities for individual parities were greater than the heritabilities from the repeatability AM, and heritabilities decreased with an increase in parity number. Heritabilities were higher for production traits, lower for SCS, and lowest for female fertility. The genetic correlations were higher than the environmental correlations. Genetic correlations between parities decreased with an increase in the difference in parity number, but all were greater than 0.5. The environmental correlations were higher for production traits, lower for SCS, and close to zero for female fertility. In the analysis of the complete milk recorded population, genetic trends from the repeatability and multitrait models were very similar. The genetic trend for SCS was economically unfavorable until 1993, and favorable since then. The genetic trend for female fertility was close to zero, but the annual environmental trend was -0.2%. The multitrait lactation model is an attractive compromise between repeatability lactation models, which do not account for maturing trends across parities, and test-day models, which are much more demanding computationally.
Note:
Related Files :
Animal
animal model
Animals
cattle
Female
Genetics
Israel
lactation
Lipids
Male
milk
עוד תגיות
תוכן קשור
More details
DOI :
Article number:
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
23490
Last updated date:
02/03/2022 17:27
Creation date:
16/04/2018 23:59
You may also be interested in
Scientific Publication
Genetic analysis of the Israeli Holstein dairy cattle population for production and nonproduction traits with a multitrait animal model
87
Weller, J.I., Institute of Animal Sciences, ARO, Volcani Center, Bet Dagan 50250, Israel
Ezra, E., Israel Cattle Breeders Association, Caesaria Industrial Park, Caesaria 38900, Israel
Genetic analysis of the Israeli Holstein dairy cattle population for production and nonproduction traits with a multitrait animal model
Milk, fat, and protein production, somatic cell score (SCS), and female fertility in the Israeli Holstein dairy cattle population were analyzed using a multitrait animal model (AM) with parities 1 through 5 as separate traits. Female fertility was measured as the inverse of the number of inseminations to conception in percent. Variance components were estimated using both the repeatability AM and multitrait AM. The multitrait heritabilities for individual parities were greater than the heritabilities from the repeatability AM, and heritabilities decreased with an increase in parity number. Heritabilities were higher for production traits, lower for SCS, and lowest for female fertility. The genetic correlations were higher than the environmental correlations. Genetic correlations between parities decreased with an increase in the difference in parity number, but all were greater than 0.5. The environmental correlations were higher for production traits, lower for SCS, and close to zero for female fertility. In the analysis of the complete milk recorded population, genetic trends from the repeatability and multitrait models were very similar. The genetic trend for SCS was economically unfavorable until 1993, and favorable since then. The genetic trend for female fertility was close to zero, but the annual environmental trend was -0.2%. The multitrait lactation model is an attractive compromise between repeatability lactation models, which do not account for maturing trends across parities, and test-day models, which are much more demanding computationally.
Scientific Publication
You may also be interested in