חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Predicting interrill erodibility factor from measured infiltration rate
Year:
1997
Source of publication :
Water Resources Research
Authors :
בן-חור, מני
;
.
Volume :
33
Co-Authors:
Ben-Hur, M., Agricultural Research Organization, Volcani Center, Bet Dagan, Israel, Agricultural Research Organization, Volcani Center, POB 6, Bet Dagan 50250, Israel
Agassi, M., Soil Erosion Research Station, Ruppin Institute, Emeq Hefer, Israel, Soil Erosion Research Station, Ruppin Institute, Emeq Hefer 60960, Israel
Facilitators :
From page:
2409
To page:
2415
(
Total pages:
7
)
Abstract:
Direct measurement of an interrill erodibility factor (K(i)) is costly and time intensive. As K(i) and the final infiltration rate (FIR) under seal formation are both affected by aggregate breakdown at the soil surface, it was hypothesized that the K(i) and FIR values are correlative. FIR and soil-loss values of 53 soils, measured in several different laboratory rainfall simulators, were investigated. The slope factor (S(f)) of smectitic soils was higher than that of nonsmectitic soils at slope angle (θ) > 9%. The equation S(f) = exp (-0.68 + 8.28 sin θ) defines significantly (r2 = 0.94) the S(f) for smectitic soil. For the various soils the FIR and K(i) values were correlative and fitted significantly the K(i) = a - b In(FIR) model; a and b are empirical coefficients. This model was found applicable for a wide range of rain intensities (34-68 mm h-1). However, an increase of the raindrop kinetic energy from <11.6 to 22.3 J mm-1 m-1 increased the absolute values of the coefficients, a and b. The FIR-K(i) model differed for smectitic and nonsmectitic soils; at a given FIR, the smectitic soils had a higher K(i) value than the nonsmectitic soils.
Note:
Related Files :
erodibility
Erosion
Infiltration
Infiltration rate
Interrill erosion
rainfall intensity
slope angle
soil
עוד תגיות
תוכן קשור
More details
DOI :
Article number:
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
23501
Last updated date:
02/03/2022 17:27
Creation date:
17/04/2018 00:00
Scientific Publication
Predicting interrill erodibility factor from measured infiltration rate
33
Ben-Hur, M., Agricultural Research Organization, Volcani Center, Bet Dagan, Israel, Agricultural Research Organization, Volcani Center, POB 6, Bet Dagan 50250, Israel
Agassi, M., Soil Erosion Research Station, Ruppin Institute, Emeq Hefer, Israel, Soil Erosion Research Station, Ruppin Institute, Emeq Hefer 60960, Israel
Predicting interrill erodibility factor from measured infiltration rate
Direct measurement of an interrill erodibility factor (K(i)) is costly and time intensive. As K(i) and the final infiltration rate (FIR) under seal formation are both affected by aggregate breakdown at the soil surface, it was hypothesized that the K(i) and FIR values are correlative. FIR and soil-loss values of 53 soils, measured in several different laboratory rainfall simulators, were investigated. The slope factor (S(f)) of smectitic soils was higher than that of nonsmectitic soils at slope angle (θ) > 9%. The equation S(f) = exp (-0.68 + 8.28 sin θ) defines significantly (r2 = 0.94) the S(f) for smectitic soil. For the various soils the FIR and K(i) values were correlative and fitted significantly the K(i) = a - b In(FIR) model; a and b are empirical coefficients. This model was found applicable for a wide range of rain intensities (34-68 mm h-1). However, an increase of the raindrop kinetic energy from <11.6 to 22.3 J mm-1 m-1 increased the absolute values of the coefficients, a and b. The FIR-K(i) model differed for smectitic and nonsmectitic soils; at a given FIR, the smectitic soils had a higher K(i) value than the nonsmectitic soils.
Scientific Publication
נגישות
menu      
You may also be interested in