Isaacson, T., Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Ronen, G., Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Zamir, D., Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Hirschberg, J., Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
Carotenoid biosynthesis in plants has been described at the molecular level for most of the biochemical steps in the pathway. However, the cis-trans isomerization of carotenoids, which is known to occur in vivo, has remained a mystery since its discovery five decades ago. To elucidate the molecular mechanism of carotenoid isomerization, we have taken a genetic map-based approach to clone the tangerine locus from tomato. Fruit of tangerine are orange and accumulate prolycopene (7Z,9Z,7′Z,9′Z-tetra-cis-lycopene) instead of the all-trans-lycopene, which normally is synthesized in the wild type. Our data indicate that the tangerine gene, designated CRTISO, encodes an authentic carotenoid isomerase that is required during carotenoid desaturation. CRTISO is a redox-type enzyme structurally related to the bacterial-type phytoene desaturase CRTI. Two alleles of tangerine have been investigated. In tangerinemic, loss of function is attributable to a deletion mutation in CRTISO, and in tangerine3183, expression of this gene is impaired. CRTISO from tomato is expressed in all green tissues but is upregulated during fruit ripening and in flowers. The function of carotene isomerase in plants presumably is to enable carotenoid biosynthesis to occur in the dark and in nonphotosynthetic tissues.
Cloning of tangerine from tomato reveals a Carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants
14
Isaacson, T., Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Ronen, G., Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Zamir, D., Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel Hirschberg, J., Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
Cloning of tangerine from tomato reveals a Carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants
Carotenoid biosynthesis in plants has been described at the molecular level for most of the biochemical steps in the pathway. However, the cis-trans isomerization of carotenoids, which is known to occur in vivo, has remained a mystery since its discovery five decades ago. To elucidate the molecular mechanism of carotenoid isomerization, we have taken a genetic map-based approach to clone the tangerine locus from tomato. Fruit of tangerine are orange and accumulate prolycopene (7Z,9Z,7′Z,9′Z-tetra-cis-lycopene) instead of the all-trans-lycopene, which normally is synthesized in the wild type. Our data indicate that the tangerine gene, designated CRTISO, encodes an authentic carotenoid isomerase that is required during carotenoid desaturation. CRTISO is a redox-type enzyme structurally related to the bacterial-type phytoene desaturase CRTI. Two alleles of tangerine have been investigated. In tangerinemic, loss of function is attributable to a deletion mutation in CRTISO, and in tangerine3183, expression of this gene is impaired. CRTISO from tomato is expressed in all green tissues but is upregulated during fruit ripening and in flowers. The function of carotene isomerase in plants presumably is to enable carotenoid biosynthesis to occur in the dark and in nonphotosynthetic tissues.