Co-Authors:
Kapulnik, Y., Department of Agronomy and Natural Resources, Institute of Field and Garden Crops, ARO, The Volcani Center, Bet Dagan, 50250, Israel
Kushnir, U., Department of Agronomy and Natural Resources, Institute of Field and Garden Crops, ARO, The Volcani Center, Bet Dagan, 50250, Israel
Abstract:
Mycorrhizal colonization and growth dependency were studied at a single rate of phosphorous application in wild and cultivated primitive and modern wheats, inoculated with Glomus intraradices Schenck & Smith. Mycorrhizal colonization found in Triticum timopheevii var. araraticum (AAGG) was higher than that found in the other tetraploid wheats (AABB). Mycorrhizal dependency was higher in representatives of the D genome donor - Aegilops squarrosa, compared with representatives of the A and possible B genome donors T. monococcum and Ae. sharonensis, Ae. longissima and Ae. speltoides, respectively. The nature of response to VAM in hexaploid wheat was controlled by factors of the A and B genomes which are epistatic over those located in the D genome. The high mycorrhizal colonization and dependency which was found in T. timopheevii var. araraticum may indicate special genomic affinity possessed by the G genome of wheat in VAM interaction. Based on the 27 wheat lines and species tested in this study only low correlation between G. intraradices colonization and its contribution to plant growth can be suggested. © 1991 Kluwer Academic Publishers.