Penicillium expansum is one of the main postharvest pathogens of apples in Israel. Heating apple fruit inoculated with P. expansum for 96 h at 38°C completely inhibited decay development. Fruit held for 24 h at 42°C or 12 h at 46°C had significantly reduced decay after an additional 14 days incubation at 20°C, compared with unheated inoculated control fruit. Mycelial growth and percentage spore germination in vitro were inversely proportional to length of time of exposure to various temperatures. The ET50 for spore germination was 42, 34 and 20 h at 38, 42 and 46°C, respectively, while the ET50 for mycelial growth was 48, 44 and 36 h at those temperatures. When Penicillium spores were incubated on crude extract prepared from the peel of apple fruits held 4 days at 38°C, germ tube elongation was significantly reduced, while the walls of the tubes were thicker, compared with germ tubes from spores incubated on crude extract prepared from peel of non-heated fruit. The evidence presented here supports the hypothesis that the effect of heating on the decay of apples caused by P. expansum is not only the result of direct inhibition of fungal germination and growth by high temperature, but is also partly due to the formation of an inhibitory substance in the heated peel.
Prestorage heat treatment reduces pathogenicity of Penicillium expansum in apple fruit
45
Fallik, E., ARO, Volcani Centre, Dept. Postharvest Sci. Fresh Produce, Bet-Dagan 50250, Israel Grinberg, S., ARO, Volcani Centre, Dept. Postharvest Sci. Fresh Produce, Bet-Dagan 50250, Israel Gambourg, M., ARO, Volcani Centre, Dept. Postharvest Sci. Fresh Produce, Bet-Dagan 50250, Israel Klein, J.D., ARO, Volcani Centre, Departmentment Agronomy Nat. Rsrc., Bet-Dagan 50250, Israel Lurie, S., ARO, Volcani Centre, Dept. Postharvest Sci. Fresh Produce, Bet-Dagan 50250, Israel
Prestorage heat treatment reduces pathogenicity of Penicillium expansum in apple fruit
Penicillium expansum is one of the main postharvest pathogens of apples in Israel. Heating apple fruit inoculated with P. expansum for 96 h at 38°C completely inhibited decay development. Fruit held for 24 h at 42°C or 12 h at 46°C had significantly reduced decay after an additional 14 days incubation at 20°C, compared with unheated inoculated control fruit. Mycelial growth and percentage spore germination in vitro were inversely proportional to length of time of exposure to various temperatures. The ET50 for spore germination was 42, 34 and 20 h at 38, 42 and 46°C, respectively, while the ET50 for mycelial growth was 48, 44 and 36 h at those temperatures. When Penicillium spores were incubated on crude extract prepared from the peel of apple fruits held 4 days at 38°C, germ tube elongation was significantly reduced, while the walls of the tubes were thicker, compared with germ tubes from spores incubated on crude extract prepared from peel of non-heated fruit. The evidence presented here supports the hypothesis that the effect of heating on the decay of apples caused by P. expansum is not only the result of direct inhibition of fungal germination and growth by high temperature, but is also partly due to the formation of an inhibitory substance in the heated peel.