נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation
Year:
2014
Source of publication :
Environmental Microbiology
Authors :
מבג'יש, סמיר
;
.
Volume :
16
Co-Authors:
Salame, T.M., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Knop, D., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Levinson, D., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Mabjeesh, S.J., Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Yarden, O., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Hadar, Y., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Facilitators :
From page:
265
To page:
277
(
Total pages:
13
)
Abstract:
Lignin biodegradation by white-rot fungi is pivotal to the earth's carbon cycle. Manganese peroxidases (MnPs), the most common extracellular ligninolytic peroxidases produced by white-rot fungi, are considered key in ligninolysis. Pleurotus ostreatus, the oyster mushroom, is a preferential lignin degrader occupying niches rich in lignocellulose such as decaying trees. Here, we provide direct, genetically based proof for the functional significance of MnP to P.ostreatus ligninolytic capacity under conditions mimicking its natural habitat. When grown on a natural lignocellulosic substrate of cotton stalks under solid-state culture conditions, gene and isoenzyme expression profiles of its short MnP and versatile peroxidase (VP)-encoding gene family revealed that mnp2 was predominately expressed. mnp2, encoding the versatile short MnP isoenzyme 2 was disrupted. Inactivation of mnp2 resulted in three interrelated phenotypes, relative to the wild-type strain: (i) reduction of 14% and 36% in lignin mineralization of stalks non-amended and amended with Mn2+, respectively; (ii) marked reduction of the bioconverted lignocellulose sensitivity to subsequent bacterial hydrolyses; and (iii) decrease in fungal respiration rate. These results may serve as the basis to clarify the roles of the various types of fungal MnPs and VPs in their contribution to white-rot decay of wood and lignocellulose in various ecosystems. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Note:
Related Files :
fungi
gene silencing
Genetics
Lignocellulose
metabolism
Microbiology
molecular genetics
peroxidase
עוד תגיות
תוכן קשור
More details
DOI :
10.1111/1462-2920.12279
Article number:
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
28107
Last updated date:
02/03/2022 17:27
Creation date:
17/04/2018 00:36
You may also be interested in
Scientific Publication
Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation
16
Salame, T.M., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Knop, D., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Levinson, D., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Mabjeesh, S.J., Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Yarden, O., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Hadar, Y., Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation
Lignin biodegradation by white-rot fungi is pivotal to the earth's carbon cycle. Manganese peroxidases (MnPs), the most common extracellular ligninolytic peroxidases produced by white-rot fungi, are considered key in ligninolysis. Pleurotus ostreatus, the oyster mushroom, is a preferential lignin degrader occupying niches rich in lignocellulose such as decaying trees. Here, we provide direct, genetically based proof for the functional significance of MnP to P.ostreatus ligninolytic capacity under conditions mimicking its natural habitat. When grown on a natural lignocellulosic substrate of cotton stalks under solid-state culture conditions, gene and isoenzyme expression profiles of its short MnP and versatile peroxidase (VP)-encoding gene family revealed that mnp2 was predominately expressed. mnp2, encoding the versatile short MnP isoenzyme 2 was disrupted. Inactivation of mnp2 resulted in three interrelated phenotypes, relative to the wild-type strain: (i) reduction of 14% and 36% in lignin mineralization of stalks non-amended and amended with Mn2+, respectively; (ii) marked reduction of the bioconverted lignocellulose sensitivity to subsequent bacterial hydrolyses; and (iii) decrease in fungal respiration rate. These results may serve as the basis to clarify the roles of the various types of fungal MnPs and VPs in their contribution to white-rot decay of wood and lignocellulose in various ecosystems. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Scientific Publication
You may also be interested in