חיפוש מתקדם

Freeman, S., Department of Plant Pathology, ARO, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
Shabi, E., Department of Plant Pathology, ARO, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
Katan, T., Department of Plant Pathology, ARO, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel

Anthracnose, or leaf-curl disease of anemone, caused by Colletotrichum sp., has been reported to occur in Australia, western Europe, and Japan. Symptoms include tissue necrosis, corm rot, leaf crinkles, and characteristic spiral twisting of floral peduncles. Three epidemics of the disease have been recorded in Israel: in 1978, in 1990 to 1993, and in 1996 to 1998. We characterized 92 Colletotrichum isolates associated with anthracnose of anemone (Anemone coronaria L.) for vegetative compatibility (72 isolates) and for molecular genotype (92 isolates) and virulence (4 isolates). Eighty-six of the isolates represented the three epidemics in Israel, one isolate was from Australia, and five isolates originated from western Europe. We divided these isolates into three vegetative-compatibility groups (VCGs). One VCG (ANE-A) included all 10 isolates from the first and second epidemics, and 13 of 62 examined isolates from the third epidemic in Israel, along with the isolate from Australia and 4 of 5 isolates from Europe. Another VCG (ANE-F) included most of the examined isolates (49 of the 62) from the third epidemic, as well as Colletotrichum acutatum from strawberry, in Israel. Based on PCR amplification with species-specific primers, all of the anemone isolates were identified as C. acutatum. Anemone and strawberry isolates of the two VCGs were genotypically similar and indistinguishable when compared by arbitrarily primed PCR of genomic DNA. Only isolate NL-12 from The Netherlands, confirmed as C. acutatum but not compatible with either VCG, had a distinct genotype; this isolate represents a third VCG of C. acutatum. Isolates from anemone and strawberry could infect both plant species in artificial inoculations. VCG ANE-F was recovered from natural infections of both anemone and strawberry, but VCG ANE-A was recovered only from anemone. This study of C. acutatum from anemone illustrates the potential of VCG analysis to reveal distinct subspecific groups within a pathogen population which appears to be genotypically homogeneous by molecular assays.
פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Characterization of Colletotrichum acutatum causing anthracnose of anemone (Anemone coronaria L.)
66

Freeman, S., Department of Plant Pathology, ARO, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
Shabi, E., Department of Plant Pathology, ARO, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
Katan, T., Department of Plant Pathology, ARO, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel

Characterization of Colletotrichum acutatum causing anthracnose of anemone (Anemone coronaria L.)
Anthracnose, or leaf-curl disease of anemone, caused by Colletotrichum sp., has been reported to occur in Australia, western Europe, and Japan. Symptoms include tissue necrosis, corm rot, leaf crinkles, and characteristic spiral twisting of floral peduncles. Three epidemics of the disease have been recorded in Israel: in 1978, in 1990 to 1993, and in 1996 to 1998. We characterized 92 Colletotrichum isolates associated with anthracnose of anemone (Anemone coronaria L.) for vegetative compatibility (72 isolates) and for molecular genotype (92 isolates) and virulence (4 isolates). Eighty-six of the isolates represented the three epidemics in Israel, one isolate was from Australia, and five isolates originated from western Europe. We divided these isolates into three vegetative-compatibility groups (VCGs). One VCG (ANE-A) included all 10 isolates from the first and second epidemics, and 13 of 62 examined isolates from the third epidemic in Israel, along with the isolate from Australia and 4 of 5 isolates from Europe. Another VCG (ANE-F) included most of the examined isolates (49 of the 62) from the third epidemic, as well as Colletotrichum acutatum from strawberry, in Israel. Based on PCR amplification with species-specific primers, all of the anemone isolates were identified as C. acutatum. Anemone and strawberry isolates of the two VCGs were genotypically similar and indistinguishable when compared by arbitrarily primed PCR of genomic DNA. Only isolate NL-12 from The Netherlands, confirmed as C. acutatum but not compatible with either VCG, had a distinct genotype; this isolate represents a third VCG of C. acutatum. Isolates from anemone and strawberry could infect both plant species in artificial inoculations. VCG ANE-F was recovered from natural infections of both anemone and strawberry, but VCG ANE-A was recovered only from anemone. This study of C. acutatum from anemone illustrates the potential of VCG analysis to reveal distinct subspecific groups within a pathogen population which appears to be genotypically homogeneous by molecular assays.
Scientific Publication
You may also be interested in