נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach
Year:
2008
Authors :
שורש, מיכל
;
.
Volume :
147
Co-Authors:
Shoresh, M., Department of Horticultural Sciences, Cornell University, Geneva, NY 14456, United States
Harman, G.E., Department of Horticultural Sciences, Cornell University, Geneva, NY 14456, United States
Facilitators :
From page:
2147
To page:
2163
(
Total pages:
17
)
Abstract:
Trichoderma spp. are effective biocontrol agents for several soil-borne plant pathogens, and some are also known for their abilities to enhance systemic resistance to plant diseases and overall plant growth. Root colonization with Trichoderma harzianum Rifai strain 22 (T22) induces large changes in the proteome of shoots of maize (Zea mays) seedlings, even though T22 is present only on roots. We chose a proteomic approach to analyze those changes and identify pathways and genes that are involved in these processes. We used two-dimensional gel electrophoresis to identify proteins that are differentially expressed in response to colonization of maize plants with T22. Up- or down-regulated spots were subjected to tryptic digestion followed by identification using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry and nanospray ion-trap tandem mass spectrometry. We identified 91 out of 114 up-regulated and 30 out of 50 down-regulated proteins in the shoots. Classification of these revealed that a large portion of the up-regulated proteins are involved in carbohydrate metabolism and some were photosynthesis or stress related. Increased photosynthesis should have resulted in increased starch accumulation in seedlings and did indeed occur. In addition, numerous proteins induced in response to Trichoderma were those involved in stress and defense responses. Other processes that were up-regulated were amino acid metabolism, cell wall metabolism, and genetic information processing. Conversely, while the proteins involved in the pathways noted above were generally up-regulated, proteins involved in other processes such as secondary metabolism and protein biosynthesis were generally not affected. Up-regulation of carbohydrate metabolism and resistance responses may correspond to the enhanced growth response and induced resistance, respectively, conferred by the Trichoderma inoculation. © 2008 American Society of Plant Biologists.
Note:
Related Files :
Genetics
photosynthesis
proteomics
Zea mays
עוד תגיות
תוכן קשור
More details
DOI :
10.1104/pp.108.123810
Article number:
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
30537
Last updated date:
02/03/2022 17:27
Creation date:
17/04/2018 00:55
You may also be interested in
Scientific Publication
The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach
147
Shoresh, M., Department of Horticultural Sciences, Cornell University, Geneva, NY 14456, United States
Harman, G.E., Department of Horticultural Sciences, Cornell University, Geneva, NY 14456, United States
The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: A proteomic approach
Trichoderma spp. are effective biocontrol agents for several soil-borne plant pathogens, and some are also known for their abilities to enhance systemic resistance to plant diseases and overall plant growth. Root colonization with Trichoderma harzianum Rifai strain 22 (T22) induces large changes in the proteome of shoots of maize (Zea mays) seedlings, even though T22 is present only on roots. We chose a proteomic approach to analyze those changes and identify pathways and genes that are involved in these processes. We used two-dimensional gel electrophoresis to identify proteins that are differentially expressed in response to colonization of maize plants with T22. Up- or down-regulated spots were subjected to tryptic digestion followed by identification using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry and nanospray ion-trap tandem mass spectrometry. We identified 91 out of 114 up-regulated and 30 out of 50 down-regulated proteins in the shoots. Classification of these revealed that a large portion of the up-regulated proteins are involved in carbohydrate metabolism and some were photosynthesis or stress related. Increased photosynthesis should have resulted in increased starch accumulation in seedlings and did indeed occur. In addition, numerous proteins induced in response to Trichoderma were those involved in stress and defense responses. Other processes that were up-regulated were amino acid metabolism, cell wall metabolism, and genetic information processing. Conversely, while the proteins involved in the pathways noted above were generally up-regulated, proteins involved in other processes such as secondary metabolism and protein biosynthesis were generally not affected. Up-regulation of carbohydrate metabolism and resistance responses may correspond to the enhanced growth response and induced resistance, respectively, conferred by the Trichoderma inoculation. © 2008 American Society of Plant Biologists.
Scientific Publication
You may also be interested in