Tarchitzky, J., Field Service, Extension Service, Ministry of Agriculture, P.O. Box 7054, Tel-Aviv 61070, Israel Golobati, Y., Dep. of Soil and Water Sciences, Fac. Agric., Food Environ. Qual. S., Hebrew Univ. of Jerusalem, Rehovot 76100, Israel Keren, R., Institute of Soils and Water, ARO, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel Chen, Y., Dep. of Soil and Water Sciences, Fac. Agric., Food Environ. Qual. S., Hebrew Univ. of Jerusalem, Rehovot 76100, Israel
Recycled wastewater effluent is an important source of irrigation water in arid and semiarid regions. In these regions, however, irrigation water quality is one of the main factors limiting plant growth. Wastewater effluents generally contain high concentrations of suspended and dissolved solids, both organic and inorganic. Inorganic dissolved solids are only minimally removed from the effluent during conventional sewage treatment (secondary or tertiary). As a result, most of the salts added during domestic and industrial usage remain in the irrigation water and may eventually reach the soil. A number of researchers have reported reduced hydraulic conductivity for soils to which treated wastewater has been applied. In this research, the influence of dissolved organic matter (DOM) contained in reclaimed wastewater effluents (mainly humic substances) on the flocculation of montmorillonite and on the hydraulic properties of soils was studied. Flocculation values (FVs) for Na-montmorillonite increased with increasing concentrations of DOM at all pH levels analyzed (5.5, 7.0, and 8.5). Maximum FV levels were exhibited for Na-montmorillonite at the highest DOM concentrations. The effect of DOM on FV can be explained by the mechanisms of edge-charge reversal and mutual flocculation. The hydraulic conductivity (HC) of a sandy soil was determined in the laboratory by leaching columns with an electrolyte solution chemically similar to that of the wastewater effluent (but without DOM). In columns treated with wastewater effluent, the HC exhibited a sharp decrease to only 20% of its initial value. The adverse effect of DOM on HC was evident for this soil despite a relatively low exchangeable sodium percentage (ESP). The reduction in HC is likely to be the result of decreased soil pore-size, which reflects two processes: (i) retention of part of the DOM during water percolation; and (ii) a change in pore-size distribution due to swelling and dispersion of clay particles. The latter may result from a higher percentage of adsorbed sodium combined with the presence of humic substances from the wastewater effluent.Recycled wastewater effluent is an important source of irrigation water in arid and semiarid regions. In these regions, however, irrigation water quality is one of the main factors limiting plant growth. Wastewater effluents generally contain high concentrations of suspended and dissolved solids, both organic and inorganic. Inorganic dissolved solids are only minimally removed from the effluent during conventional sewage treatment (secondary or tertiary). As a result, most of the salts added during domestic and industrial usage remain in the irrigation water and may eventually reach the soil. A number of researchers have reported reduced hydraulic conductivity for soils to which treated wastewater has been applied. In this research, the influence of dissolved organic matter (DOM) contained in reclaimed wastewater effluents (mainly humic substances) on the flocculation of montmorillonite and on the hydraulic properties of soils was studied. Flocculation values (FVs) for Na-montmorillonite increased with increasing concentrations of DOM at all pH levels analyzed (5.5, 7.0, and 8.5). Maximum FV levels were exhibited for Na-montmorillonite at the highest DOM concentrations. The effect of DOM on FV can be explained by the mechanisms of edge-charge reversal and mutual flocculation. The hydraulic conductivity (HC) of a sandy soil was determined in the laboratory by leaching columns with an electrolyte solution chemically similar to that of the wastewater effluent (but without DOM). In columns treated with wastewater effluent, the HC exhibited a sharp decrease to only 20% of its initial value. The adverse effect of DOM on HC was evident for this soil despite a relatively low exchangeable sodium percentage (ESP). The reduction in HC is likely to be the result of decreased soil pore-size, which reflects two processes: (i) retention of part of the DOM during water percolation; and (ii) a change in pore-size distribution due to swelling and dispersion of clay particles. The latter may result from a higher percentage of adsorbed sodium combined with the presence of humic substances from the wastewater effluent.
Wastewater effects on montmorillonite suspensions and hydraulic properties of sandy soils
63
Tarchitzky, J., Field Service, Extension Service, Ministry of Agriculture, P.O. Box 7054, Tel-Aviv 61070, Israel Golobati, Y., Dep. of Soil and Water Sciences, Fac. Agric., Food Environ. Qual. S., Hebrew Univ. of Jerusalem, Rehovot 76100, Israel Keren, R., Institute of Soils and Water, ARO, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel Chen, Y., Dep. of Soil and Water Sciences, Fac. Agric., Food Environ. Qual. S., Hebrew Univ. of Jerusalem, Rehovot 76100, Israel
Wastewater effects on montmorillonite suspensions and hydraulic properties of sandy soils
Recycled wastewater effluent is an important source of irrigation water in arid and semiarid regions. In these regions, however, irrigation water quality is one of the main factors limiting plant growth. Wastewater effluents generally contain high concentrations of suspended and dissolved solids, both organic and inorganic. Inorganic dissolved solids are only minimally removed from the effluent during conventional sewage treatment (secondary or tertiary). As a result, most of the salts added during domestic and industrial usage remain in the irrigation water and may eventually reach the soil. A number of researchers have reported reduced hydraulic conductivity for soils to which treated wastewater has been applied. In this research, the influence of dissolved organic matter (DOM) contained in reclaimed wastewater effluents (mainly humic substances) on the flocculation of montmorillonite and on the hydraulic properties of soils was studied. Flocculation values (FVs) for Na-montmorillonite increased with increasing concentrations of DOM at all pH levels analyzed (5.5, 7.0, and 8.5). Maximum FV levels were exhibited for Na-montmorillonite at the highest DOM concentrations. The effect of DOM on FV can be explained by the mechanisms of edge-charge reversal and mutual flocculation. The hydraulic conductivity (HC) of a sandy soil was determined in the laboratory by leaching columns with an electrolyte solution chemically similar to that of the wastewater effluent (but without DOM). In columns treated with wastewater effluent, the HC exhibited a sharp decrease to only 20% of its initial value. The adverse effect of DOM on HC was evident for this soil despite a relatively low exchangeable sodium percentage (ESP). The reduction in HC is likely to be the result of decreased soil pore-size, which reflects two processes: (i) retention of part of the DOM during water percolation; and (ii) a change in pore-size distribution due to swelling and dispersion of clay particles. The latter may result from a higher percentage of adsorbed sodium combined with the presence of humic substances from the wastewater effluent.Recycled wastewater effluent is an important source of irrigation water in arid and semiarid regions. In these regions, however, irrigation water quality is one of the main factors limiting plant growth. Wastewater effluents generally contain high concentrations of suspended and dissolved solids, both organic and inorganic. Inorganic dissolved solids are only minimally removed from the effluent during conventional sewage treatment (secondary or tertiary). As a result, most of the salts added during domestic and industrial usage remain in the irrigation water and may eventually reach the soil. A number of researchers have reported reduced hydraulic conductivity for soils to which treated wastewater has been applied. In this research, the influence of dissolved organic matter (DOM) contained in reclaimed wastewater effluents (mainly humic substances) on the flocculation of montmorillonite and on the hydraulic properties of soils was studied. Flocculation values (FVs) for Na-montmorillonite increased with increasing concentrations of DOM at all pH levels analyzed (5.5, 7.0, and 8.5). Maximum FV levels were exhibited for Na-montmorillonite at the highest DOM concentrations. The effect of DOM on FV can be explained by the mechanisms of edge-charge reversal and mutual flocculation. The hydraulic conductivity (HC) of a sandy soil was determined in the laboratory by leaching columns with an electrolyte solution chemically similar to that of the wastewater effluent (but without DOM). In columns treated with wastewater effluent, the HC exhibited a sharp decrease to only 20% of its initial value. The adverse effect of DOM on HC was evident for this soil despite a relatively low exchangeable sodium percentage (ESP). The reduction in HC is likely to be the result of decreased soil pore-size, which reflects two processes: (i) retention of part of the DOM during water percolation; and (ii) a change in pore-size distribution due to swelling and dispersion of clay particles. The latter may result from a higher percentage of adsorbed sodium combined with the presence of humic substances from the wastewater effluent.