חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Characterization of the ABA signal transduction pathway in Vitis vinifera
Year:
2012
Source of publication :
Plant Science
Authors :
ביטון, איריס
;
.
בן-ארי, גיורא
;
.
Volume :
187
Co-Authors:
Boneh, U., Institute of Plant Science, Volcani Center, ARO, Bet-Dagan, Israel, Institute of Plant Science, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
Biton, I., Institute of Plant Science, Volcani Center, ARO, Bet-Dagan, Israel
Schwartz, A., Institute of Plant Science, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
Ben-Ari, G., Institute of Plant Science, Volcani Center, ARO, Bet-Dagan, Israel
Facilitators :
From page:
89
To page:
96
(
Total pages:
8
)
Abstract:
The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments. © 2012 Elsevier Ireland Ltd.
Note:
Related Files :
gene expression
Genetics
metabolism
Vitis
עוד תגיות
תוכן קשור
More details
DOI :
10.1016/j.plantsci.2012.01.015
Article number:
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
31587
Last updated date:
02/03/2022 17:27
Creation date:
17/04/2018 01:03
You may also be interested in
Scientific Publication
Characterization of the ABA signal transduction pathway in Vitis vinifera
187
Boneh, U., Institute of Plant Science, Volcani Center, ARO, Bet-Dagan, Israel, Institute of Plant Science, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
Biton, I., Institute of Plant Science, Volcani Center, ARO, Bet-Dagan, Israel
Schwartz, A., Institute of Plant Science, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
Ben-Ari, G., Institute of Plant Science, Volcani Center, ARO, Bet-Dagan, Israel
Characterization of the ABA signal transduction pathway in Vitis vinifera
The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments. © 2012 Elsevier Ireland Ltd.
Scientific Publication
נגישות
menu      
You may also be interested in