נגישות
menu      
חיפוש מתקדם
BMC Genomics
Zhang, X., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States, The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Scheuring, C.F., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Zhang, M., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States, College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
Dong, J.J., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Zhang, Y., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Huang, J.J., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Lee, M.-K., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Abbo, S., Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
Sherman, A., The Volcani Center, P.O. Box 6, Bet-Dagan, 50250, Israel
Shtienberg, D., The Volcani Center, P.O. Box 6, Bet-Dagan, 50250, Israel
Chen, W., USDA-ARS and Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6434, United States
Muehlbauer, F., USDA-ARS and Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6434, United States
Zhang, H.-B., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Background: Chickpea (Cicer arietinum L.) is the third most important pulse crop worldwide. Despite its importance, relatively little is known about its genome. The availability of a genome-wide physical map allows rapid fine mapping of QTL, development of high-density genome maps, and sequencing of the entire genome. However, no such a physical map has been developed in chickpea.Results: We present a genome-wide, BAC/BIBAC-based physical map of chickpea developed by fingerprint analysis. Four chickpea BAC and BIBAC libraries, two of which were constructed in this study, were used. A total of 67,584 clones were fingerprinted, and 64,211 (~11.7 ×) of the fingerprints validated and used in the physical map assembly. The physical map consists of 1,945 BAC/BIBAC contigs, with each containing an average of 28.3 clones and having an average physical length of 559 kb. The contigs collectively span approximately 1,088 Mb. By using the physical map, we identified the BAC/BIBAC contigs containing or closely linked to QTL4.1 for resistance to Didymella rabiei (RDR) and QTL8 for days to first flower (DTF), thus further verifying the physical map and confirming its utility in fine mapping and cloning of QTL.Conclusion: The physical map represents the first genome-wide, BAC/BIBAC-based physical map of chickpea. This map, along with other genomic resources previously developed in the species and the genome sequences of related species (soybean, Medicago and Lotus), will provide a foundation necessary for many areas of advanced genomics research in chickpea and other legume species. The inclusion of transformation-ready BIBACs in the map greatly facilitates its utility in functional analysis of the legume genomes. © 2010 Zhang et al; licensee BioMed Central Ltd.
פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
A BAC/BIBAC-based physical map of chickpea, Cicer arietinum L
11
Zhang, X., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States, The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Scheuring, C.F., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Zhang, M., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States, College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
Dong, J.J., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Zhang, Y., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Huang, J.J., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Lee, M.-K., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
Abbo, S., Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
Sherman, A., The Volcani Center, P.O. Box 6, Bet-Dagan, 50250, Israel
Shtienberg, D., The Volcani Center, P.O. Box 6, Bet-Dagan, 50250, Israel
Chen, W., USDA-ARS and Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6434, United States
Muehlbauer, F., USDA-ARS and Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6434, United States
Zhang, H.-B., Department of Soil and Crop Sciences, Texas AandM University, College Station, TX 77843-2474, United States
A BAC/BIBAC-based physical map of chickpea, Cicer arietinum L
Background: Chickpea (Cicer arietinum L.) is the third most important pulse crop worldwide. Despite its importance, relatively little is known about its genome. The availability of a genome-wide physical map allows rapid fine mapping of QTL, development of high-density genome maps, and sequencing of the entire genome. However, no such a physical map has been developed in chickpea.Results: We present a genome-wide, BAC/BIBAC-based physical map of chickpea developed by fingerprint analysis. Four chickpea BAC and BIBAC libraries, two of which were constructed in this study, were used. A total of 67,584 clones were fingerprinted, and 64,211 (~11.7 ×) of the fingerprints validated and used in the physical map assembly. The physical map consists of 1,945 BAC/BIBAC contigs, with each containing an average of 28.3 clones and having an average physical length of 559 kb. The contigs collectively span approximately 1,088 Mb. By using the physical map, we identified the BAC/BIBAC contigs containing or closely linked to QTL4.1 for resistance to Didymella rabiei (RDR) and QTL8 for days to first flower (DTF), thus further verifying the physical map and confirming its utility in fine mapping and cloning of QTL.Conclusion: The physical map represents the first genome-wide, BAC/BIBAC-based physical map of chickpea. This map, along with other genomic resources previously developed in the species and the genome sequences of related species (soybean, Medicago and Lotus), will provide a foundation necessary for many areas of advanced genomics research in chickpea and other legume species. The inclusion of transformation-ready BIBACs in the map greatly facilitates its utility in functional analysis of the legume genomes. © 2010 Zhang et al; licensee BioMed Central Ltd.
Scientific Publication
You may also be interested in