Savidor, A., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
Chalupowicz, L., Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, Israel
Teper, D., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
Gartemann, K.-H., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel, Department of Genetechnology/Microbiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
Eichenlaub, R., Department of Genetechnology/Microbiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
Manulis-Sasson, S., Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, Israel
Barash, I., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
Sessa, G., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
The plant pathogen Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterium responsible for wilt and canker disease of tomato. Although disease development is well characterized and diagnosed, molecular mechanisms of C. michiganensis subsp. michiganensis virulence are poorly understood. Here, we identified and characterized two C. michiganensis subsp. michiganensis transcriptional regulators, Vatr1 and Vatr2, that are involved in pathogenicity of C. michiganensis subsp. michiganensis. Vatr1 and Vatr2 belong to TetR and MocR families of transcriptional regulators, respectively. Mutations in their corresponding genes caused attenuated virulence, with the Δvatr2 mutant showing a more dramatic effect than Δvatr1. Although both mutants grew well in vitro and reached a high titer in planta, they caused reduced wilting and canker development in infected plants compared with the wild-type bacterium. They also led to a reduced expression of the ethylene-synthesizing tomato enzyme ACC-oxidase compared with wild-type C. michiganensis subsp. michiganensis and to reduced ethylene production in the plant. Transcriptomic analysis of wild-type C. michiganensis subsp. michiganensis and the two mutants under infectionmimicking conditions revealed that Vatr1 and Vatr2 regulate expression of virulence factors, membrane and secreted proteins, and signal-transducing proteins. A 70% overlap between the sets of genes positively regulated by Vatr1 and Vatr2 suggests that these transcriptional regulators are on the same molecular pathway responsible for C. michiganensis subsp. michiganensis virulence. © 2014 The American Phytopathological Society.
פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Clavibacter michiganensis subsp. michiganensis Vatr1 and Vatr2 transcriptional regulators are required for virulence in tomato
27
Savidor, A., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
Chalupowicz, L., Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, Israel
Teper, D., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
Gartemann, K.-H., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel, Department of Genetechnology/Microbiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
Eichenlaub, R., Department of Genetechnology/Microbiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
Manulis-Sasson, S., Department of Plant Pathology and Weed Research, ARO, Volcani Center, Bet Dagan, Israel
Barash, I., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
Sessa, G., Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
Clavibacter michiganensis subsp. michiganensis Vatr1 and Vatr2 transcriptional regulators are required for virulence in tomato
The plant pathogen Clavibacter michiganensis subsp. michiganensis is a gram-positive bacterium responsible for wilt and canker disease of tomato. Although disease development is well characterized and diagnosed, molecular mechanisms of C. michiganensis subsp. michiganensis virulence are poorly understood. Here, we identified and characterized two C. michiganensis subsp. michiganensis transcriptional regulators, Vatr1 and Vatr2, that are involved in pathogenicity of C. michiganensis subsp. michiganensis. Vatr1 and Vatr2 belong to TetR and MocR families of transcriptional regulators, respectively. Mutations in their corresponding genes caused attenuated virulence, with the Δvatr2 mutant showing a more dramatic effect than Δvatr1. Although both mutants grew well in vitro and reached a high titer in planta, they caused reduced wilting and canker development in infected plants compared with the wild-type bacterium. They also led to a reduced expression of the ethylene-synthesizing tomato enzyme ACC-oxidase compared with wild-type C. michiganensis subsp. michiganensis and to reduced ethylene production in the plant. Transcriptomic analysis of wild-type C. michiganensis subsp. michiganensis and the two mutants under infectionmimicking conditions revealed that Vatr1 and Vatr2 regulate expression of virulence factors, membrane and secreted proteins, and signal-transducing proteins. A 70% overlap between the sets of genes positively regulated by Vatr1 and Vatr2 suggests that these transcriptional regulators are on the same molecular pathway responsible for C. michiganensis subsp. michiganensis virulence. © 2014 The American Phytopathological Society.
Scientific Publication