נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Transcriptome analysis unravels spatiotemporal modulation of phytohormone-pathway expression underlying gibberellin-induced parthenocarpic fruit set in San Pedro-type fig (Ficus carica L.)
Year:
2018
Source of publication :
BMC Plant Biology
Authors :
פליישמן, משה
;
.
Volume :
18
Co-Authors:

Chai, L., China Agricultural University, College of Horticulture, Beijing, China; Chai, P., China Agricultural University, College of Horticulture, Beijing, China; Chen, S., China Agricultural University, College of Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, Beijing, China; Ma, H., China Agricultural University, College of Horticulture, Beijing, China

Facilitators :
From page:
0
To page:
0
(
Total pages:
1
)
Abstract:

kground: Gibberellin (GA) treatments can induce parthenocarpy in the main crop of San Pedro-type figs, the native non-parthenocarpic fruit, however, the underlying mechanism is still largely unclear. Results: In our study, GA3 was applied to San Pedro-type fig main crop at anthesis. Sharply increased GA3 content was detected in both female flowers and receptacle, along with significantly decreased indole-3-acetic acid (IAA), zeatin and abscisic acid (ABA) levels in female flowers, and increased zeatin peak intensity and earlier ABA peak in receptacles. Transcriptome comparison between control and treatment groups identified more differentially expressed genes (DEGs) in receptacles than in female flowers 2 and 4 days after treatment (DAT); 10 DAT, the number of DEGs became similar in the two tissues. Synchronized changing trends of phytohormone-associated DEGs were observed in female flowers and receptacles with fruit development. Modulation of ethylene and GA signaling and auxin metabolism by exogenous GA3 occurred mainly 2 DAT, whereas changes in auxin, cytokinin and ABA signaling occurred mainly 10 DAT. Auxin-, ethylene- and ABA-metabolism and response pathways were largely regulated in the two tissues, mostly 2 and 10 DAT. The major components altering fig phytohormone metabolic and response patterns included downregulated GA2ox, BAS1, NCED and ACO, and upregulated ABA 8'-h and AUX/IAA. Conclusions: Thus GA-induced parthenocarpy in fig is co-modulated by the female flowers and receptacle, and repression of ABA and ethylene biosynthesis and GA catabolism might be the main forces deflecting abscission and producing fig parthenocarpy. © 2018 The Author(s).

Note:
Related Files :
Ficus carica
Gibberellin treatment
parthenocarpy
plant hormone
Transcriptome analysis
עוד תגיות
תוכן קשור
More details
DOI :
10.1186/s12870-018-1318-1
Article number:
100
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
34681
Last updated date:
02/03/2022 17:27
Creation date:
02/07/2018 13:23
You may also be interested in
Scientific Publication
Transcriptome analysis unravels spatiotemporal modulation of phytohormone-pathway expression underlying gibberellin-induced parthenocarpic fruit set in San Pedro-type fig (Ficus carica L.)
18

Chai, L., China Agricultural University, College of Horticulture, Beijing, China; Chai, P., China Agricultural University, College of Horticulture, Beijing, China; Chen, S., China Agricultural University, College of Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, Beijing, China; Ma, H., China Agricultural University, College of Horticulture, Beijing, China

Transcriptome analysis unravels spatiotemporal modulation of phytohormone-pathway expression underlying gibberellin-induced parthenocarpic fruit set in San Pedro-type fig (Ficus carica L.) .

kground: Gibberellin (GA) treatments can induce parthenocarpy in the main crop of San Pedro-type figs, the native non-parthenocarpic fruit, however, the underlying mechanism is still largely unclear. Results: In our study, GA3 was applied to San Pedro-type fig main crop at anthesis. Sharply increased GA3 content was detected in both female flowers and receptacle, along with significantly decreased indole-3-acetic acid (IAA), zeatin and abscisic acid (ABA) levels in female flowers, and increased zeatin peak intensity and earlier ABA peak in receptacles. Transcriptome comparison between control and treatment groups identified more differentially expressed genes (DEGs) in receptacles than in female flowers 2 and 4 days after treatment (DAT); 10 DAT, the number of DEGs became similar in the two tissues. Synchronized changing trends of phytohormone-associated DEGs were observed in female flowers and receptacles with fruit development. Modulation of ethylene and GA signaling and auxin metabolism by exogenous GA3 occurred mainly 2 DAT, whereas changes in auxin, cytokinin and ABA signaling occurred mainly 10 DAT. Auxin-, ethylene- and ABA-metabolism and response pathways were largely regulated in the two tissues, mostly 2 and 10 DAT. The major components altering fig phytohormone metabolic and response patterns included downregulated GA2ox, BAS1, NCED and ACO, and upregulated ABA 8'-h and AUX/IAA. Conclusions: Thus GA-induced parthenocarpy in fig is co-modulated by the female flowers and receptacle, and repression of ABA and ethylene biosynthesis and GA catabolism might be the main forces deflecting abscission and producing fig parthenocarpy. © 2018 The Author(s).

Scientific Publication
You may also be interested in