נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries
Year:
2018
Source of publication :
Plant Science
Authors :
בר, עינת
;
.
גונדה, איתי
;
.
דוידוביץ'-רקנאטי, רחל
;
.
לוין, ילנה
;
.
לוינסון, אפרים
;
.
ליכטר, אמנון
;
.
מעוז, איתי
;
.
סלע, נעה
;
.
קפלונוב, טטיאנה
;
.
שלזינגר, דניאל רוברטו
;
.
Volume :
274
Co-Authors:
Facilitators :
From page:
223
To page:
230
(
Total pages:
8
)
Abstract:

Volatile esters contribute to the aroma and flavor of many fruits but are normally absent in grape berries (Vitis vinifera L.). To examine the biosynthetic potential of grape berries to form volatile esters, berry sections were incubated with exogenous L-Phe, L-Leu or L-Met. In general, amino-acid incubation caused the accumulation of the respective aldehydes and alcohols. Moreover, L-Leu incubation resulted in the accumulation of 3-methylbutyl acetate and L-Phe incubation resulted in the accumulation 2-phenylethyl acetate in ‘Muscat Hamburg’ but not in the other grape accessions. Exogenous L-Met administration did not result in volatile esters accumulation but the accumulation of sulfur volatile compounds such as methional and dimethyl disulfide was prominent. Berry-derived cell-free extracts displayed differential alcohol acetyltransferase activities and supported the formation of 3-methylbutyl acetate and benzyl acetate. 2-Phenylethyl acetate was produced only in ‘Muscat Hamburg’ cell-free extracts. VvAAT2, a newly characterized gene, was preferentially expressed in ‘Muscat Hamburg’ berries and functionally expressed in E. coli. VvAAT2 possesses alcohol acetyltransferase activity utilizing benzyl alcohol, 2-phenylethanol, hexanol or 3-methylbutanol as substrates. Our study demonstrates that grape berries have a concealed potential to accumulate volatile esters and this process is limited by substrate availability. © 2018

Note:
Related Files :
Acetyl esters
Alcohol acetyltransferase
Amino Acids
enzyme activity
Functional expression VvAAT2
Table grapes
Vitis / grapes
עוד תגיות
תוכן קשור
More details
DOI :
10.1016/j.plantsci.2018.05.020
Article number:
0
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
34692
Last updated date:
02/03/2022 17:27
Creation date:
03/07/2018 11:57
Scientific Publication
Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries
274 .
Concealed ester formation and amino acid metabolism to volatile compounds in table grape (Vitis vinifera L.) berries .

Volatile esters contribute to the aroma and flavor of many fruits but are normally absent in grape berries (Vitis vinifera L.). To examine the biosynthetic potential of grape berries to form volatile esters, berry sections were incubated with exogenous L-Phe, L-Leu or L-Met. In general, amino-acid incubation caused the accumulation of the respective aldehydes and alcohols. Moreover, L-Leu incubation resulted in the accumulation of 3-methylbutyl acetate and L-Phe incubation resulted in the accumulation 2-phenylethyl acetate in ‘Muscat Hamburg’ but not in the other grape accessions. Exogenous L-Met administration did not result in volatile esters accumulation but the accumulation of sulfur volatile compounds such as methional and dimethyl disulfide was prominent. Berry-derived cell-free extracts displayed differential alcohol acetyltransferase activities and supported the formation of 3-methylbutyl acetate and benzyl acetate. 2-Phenylethyl acetate was produced only in ‘Muscat Hamburg’ cell-free extracts. VvAAT2, a newly characterized gene, was preferentially expressed in ‘Muscat Hamburg’ berries and functionally expressed in E. coli. VvAAT2 possesses alcohol acetyltransferase activity utilizing benzyl alcohol, 2-phenylethanol, hexanol or 3-methylbutanol as substrates. Our study demonstrates that grape berries have a concealed potential to accumulate volatile esters and this process is limited by substrate availability. © 2018

Scientific Publication
You may also be interested in