Moshe Inbar, Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, 31905, Israel
Mor Salomon, Israel Cohen Institute for Biological Control, Plant Production and Marketing Board, Citrus Division, P.O. Box 54, Bet Dagan, 50250, Israel
Several phytoseiid species can potentially control the citrus rust mite (CRM). Their effectiveness varies, however, as do their intraguild interactions. Under laboratory conditions, Euseius stipulatus, E. scutalis and Iphiseius degenerans preyed effectively on CRM, whereas Amblyseius swirskii and Typhlodromus athiasae had no effect on CRM. In combination with A. swirskii, Euseius numbers were reduced due to intraguild predation, and consequently CRM suppression was less effective. In the field, predatory mite species can be variably provisioned by windborne pollen released from cover crops such as Rhodes Grass (RG). We aimed to determine the effects of RG on the phytoseiid community in two field experiments, on different cultivars (pomelo and Shamouti orange). We also tested these communities for negative interspecific abundance relationships that are expected if their respective laboratory‐observed intraguild interactions are manifested in the field.
Moshe Inbar, Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, 31905, Israel
Mor Salomon, Israel Cohen Institute for Biological Control, Plant Production and Marketing Board, Citrus Division, P.O. Box 54, Bet Dagan, 50250, Israel
Several phytoseiid species can potentially control the citrus rust mite (CRM). Their effectiveness varies, however, as do their intraguild interactions. Under laboratory conditions, Euseius stipulatus, E. scutalis and Iphiseius degenerans preyed effectively on CRM, whereas Amblyseius swirskii and Typhlodromus athiasae had no effect on CRM. In combination with A. swirskii, Euseius numbers were reduced due to intraguild predation, and consequently CRM suppression was less effective. In the field, predatory mite species can be variably provisioned by windborne pollen released from cover crops such as Rhodes Grass (RG). We aimed to determine the effects of RG on the phytoseiid community in two field experiments, on different cultivars (pomelo and Shamouti orange). We also tested these communities for negative interspecific abundance relationships that are expected if their respective laboratory‐observed intraguild interactions are manifested in the field.