חיפוש מתקדם

Microbial population dynamics associated with corn silage, with and without Lactobacillus plantarum treatment, was studied. Whole crop corn was ensiled using laboratory silos and sampled at different times, up to 3 months. The dominant bacteria, before ensiling, were Acinetobacter (38.5%) and Klebsiella (16.3%), while the dominant fungi were Meyerozyma (53.5%) and Candida (27.7%). During ensiling, the microbial population shifted considerably, and Lactobacillus (> 94%) and Candida (> 74%) became the most dominant microbial genera in both treated and untreated silages. Yet, lactic acid content was higher in the treated silage, while the microbial diversity was lower than in the untreated silage. Upon aerobic exposure, spoilage occurred more rapidly in the treated silage, possibly due to the higher abundance of lactic acid-assimilating fungi, such as Candida. Our study is the first to describe microbial population dynamics during whole-crop corn ensiling and the results indicate that microbial diversity may be an indicator of aerobic stability. © 2018 Springer-Verlag GmbH Germany, part of Springer Nature

Microbial Food-Safety Research Unit, Department of Food Quality and Safety, The Volcani Center, Agriculture Research Organization, Institute for Postharvest and Food Sciences, Derech HaMaccabim Road 68, POB 15159, Rishon-LeZion, Israel

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant
102
Microbiome dynamics during ensiling of corn with and without Lactobacillus plantarum inoculant

Microbial population dynamics associated with corn silage, with and without Lactobacillus plantarum treatment, was studied. Whole crop corn was ensiled using laboratory silos and sampled at different times, up to 3 months. The dominant bacteria, before ensiling, were Acinetobacter (38.5%) and Klebsiella (16.3%), while the dominant fungi were Meyerozyma (53.5%) and Candida (27.7%). During ensiling, the microbial population shifted considerably, and Lactobacillus (> 94%) and Candida (> 74%) became the most dominant microbial genera in both treated and untreated silages. Yet, lactic acid content was higher in the treated silage, while the microbial diversity was lower than in the untreated silage. Upon aerobic exposure, spoilage occurred more rapidly in the treated silage, possibly due to the higher abundance of lactic acid-assimilating fungi, such as Candida. Our study is the first to describe microbial population dynamics during whole-crop corn ensiling and the results indicate that microbial diversity may be an indicator of aerobic stability. © 2018 Springer-Verlag GmbH Germany, part of Springer Nature

Scientific Publication
You may also be interested in