Ephrath, J., French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, 849900, Israel; Rachmilevitch, S., French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, 849900, Israel
The parasite Phelipanche aegyptiaca infests tomato, a crop plant that is commonly cultivated in semi-arid environments, where tomato may be subject to salt stress. Since the relationship between the two stresses —salinity and parasitism – has been poorly investigated in tomato, the effects of P. aegyptiaca parasitism on tomato growing under moderate salinity were examined. Tomatoes were grown with regular or saline water irrigation (3 and 45 mM Cl−, respectively) in soils infested with P. aegyptiaca. The infested plants accumulated higher levels of sodium and chloride ions in the roots, shoots and leaves (old and young) under both salinity levels vs. non-infected plants. There was a positive linear correlation between P. aegyptiaca biomass and salt accumulation in young tomato leaves, and a negative linear correlation between parasite biomass and the osmotic potential of young tomato leaves. Concentrations of the osmoprotectants proline, myoinositol and sucrose were reduced in infected tomato plants, which impaired the host's osmotic adjustment ability. The sensitivity of P. aegyptiaca to salt stress was manifested as a decrease in biomass. In conclusion, P. aegyptiaca parasitism reduced the salt tolerance of tomato plants by promoting the accumulation of salts from the rhizosphere and impairing the host's osmotic adjustment ability. © 2018 Scandinavian Plant Physiology Society
Ephrath, J., French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, 849900, Israel; Rachmilevitch, S., French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, 849900, Israel
The parasite Phelipanche aegyptiaca infests tomato, a crop plant that is commonly cultivated in semi-arid environments, where tomato may be subject to salt stress. Since the relationship between the two stresses —salinity and parasitism – has been poorly investigated in tomato, the effects of P. aegyptiaca parasitism on tomato growing under moderate salinity were examined. Tomatoes were grown with regular or saline water irrigation (3 and 45 mM Cl−, respectively) in soils infested with P. aegyptiaca. The infested plants accumulated higher levels of sodium and chloride ions in the roots, shoots and leaves (old and young) under both salinity levels vs. non-infected plants. There was a positive linear correlation between P. aegyptiaca biomass and salt accumulation in young tomato leaves, and a negative linear correlation between parasite biomass and the osmotic potential of young tomato leaves. Concentrations of the osmoprotectants proline, myoinositol and sucrose were reduced in infected tomato plants, which impaired the host's osmotic adjustment ability. The sensitivity of P. aegyptiaca to salt stress was manifested as a decrease in biomass. In conclusion, P. aegyptiaca parasitism reduced the salt tolerance of tomato plants by promoting the accumulation of salts from the rhizosphere and impairing the host's osmotic adjustment ability. © 2018 Scandinavian Plant Physiology Society