D. Rubiales, M. Fernandez-Aparicio, M. Vurro
Over 4,000 plant species parasitize other plants to obtain water and nutrients. A few of these species have become weedy posing a tremendous threat to agriculture. The most damaging to annual crops are the root parasitic weeds, particularly broomrapes (Orobanche and Phelipanche spp.) and witchweeds (Striga spp.), which are extended over large agricultural areas in Europe, Africa and Asia. A problem of less magnitude but of increasing importance is inflicted by the parasitic weeds Alectra, Aeginetia, Buchnera, and Rhamphicarpa. To date, advances in control strategies have concentrated on agronomic practices, resistant varieties and the use of herbicides, often showing limited level of control particularly in low-input crops. Novel control programmes should be sympathetic to agricultural extensification while exerting minimal harmful effects on the environment. In addition, global environmental changes, together with changing land use patterns with less dependency on synthetic herbicides is favoring the diffusion of parasitic weeds to new geographical areas and farming systems. Thus, besides control methods, it is imperative to prevent the spread of parasitic weeds and to impose, where possible quarantine regulations.
The goal of this Research Topic was to present new research dealing with advanced management of parasitic weeds, but also new knowledge on its mechanism, the biology and physiology of the processes of parasitic weed germination and crop infection, their genetics and population dynamics, and to present novel sources of crop resistance, in order to offer new understanding of these enigmatic plants and their better management. Here a brief outline of its contents, briefly describing the articles grouped by subjects.
D. Rubiales, M. Fernandez-Aparicio, M. Vurro
Over 4,000 plant species parasitize other plants to obtain water and nutrients. A few of these species have become weedy posing a tremendous threat to agriculture. The most damaging to annual crops are the root parasitic weeds, particularly broomrapes (Orobanche and Phelipanche spp.) and witchweeds (Striga spp.), which are extended over large agricultural areas in Europe, Africa and Asia. A problem of less magnitude but of increasing importance is inflicted by the parasitic weeds Alectra, Aeginetia, Buchnera, and Rhamphicarpa. To date, advances in control strategies have concentrated on agronomic practices, resistant varieties and the use of herbicides, often showing limited level of control particularly in low-input crops. Novel control programmes should be sympathetic to agricultural extensification while exerting minimal harmful effects on the environment. In addition, global environmental changes, together with changing land use patterns with less dependency on synthetic herbicides is favoring the diffusion of parasitic weeds to new geographical areas and farming systems. Thus, besides control methods, it is imperative to prevent the spread of parasitic weeds and to impose, where possible quarantine regulations.
The goal of this Research Topic was to present new research dealing with advanced management of parasitic weeds, but also new knowledge on its mechanism, the biology and physiology of the processes of parasitic weed germination and crop infection, their genetics and population dynamics, and to present novel sources of crop resistance, in order to offer new understanding of these enigmatic plants and their better management. Here a brief outline of its contents, briefly describing the articles grouped by subjects.