נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Accumulated Gibbs free energy as a quantitative measure of desorption hysteresis associated with the formation of metastable states
Year:
2019
Source of publication :
Chemosphere
Authors :
בוריסובר, מיכאל
;
.
Volume :
Co-Authors:
Facilitators :
From page:
490
To page:
499
(
Total pages:
10
)
Abstract:

The persistence of metastable states was proposed in the literature as one explanation for sorption-desorption hysteresis (SDH) of organic compounds on soils and sediments. When such metastable states freely exchange sorbate molecules with the surroundings and there is no spontaneous exit of a whole system from that state, it is possible to determine the extra Gibbs free energy (ΔGext) accumulated in a system due to the persistence of metastable states. A novel contribution of this paper is the characterization of SDH, in which the sorption isotherm (SI) and desorption isotherm (DI) do not close a loop, in terms of free energy needed to create “frozen” metastable states. To that end, liquid phase sorption of non-ionized sorbates is considered and by integrating over the sorption-desorption sequence, ΔGext and an integral hysteresis index (IHI) were obtained. Experimental data collected from the literature on aqueous sorption and desorption of polyaromatic hydrocarbons, triazines and ureas were examined on soils, sediments, organic matter-rich sorbents, montmorillonites and fullerene. Positive ΔGext values were obtained to quantify the thermodynamic potential for spontaneous exit from a metastable state that is not implemented due to the kinetic barriers. Relating the ΔGext values to sorbate molecular structure and sorbent properties may allow the prediction of SDH for various chemicals on sorbents in which the sorbate-induced perturbation of a sorbent matrix is believed to be a cause for the formation of persistent metastable states and the appearance of a non-closed sorption-desorption sequence. © 2018 Elsevier Ltd

Note:
Related Files :
Biological materials
Gibbs free energy
Hysteresis
natural organic matter
Sediments
Sorption
Sorption isotherms
עוד תגיות
תוכן קשור
More details
DOI :
10.1016/j.chemosphere.2018.10.051
Article number:
0
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
38101
Last updated date:
02/03/2022 17:27
Creation date:
20/11/2018 11:59
You may also be interested in
Scientific Publication
Accumulated Gibbs free energy as a quantitative measure of desorption hysteresis associated with the formation of metastable states
Accumulated Gibbs free energy as a quantitative measure of desorption hysteresis associated with the formation of metastable states

The persistence of metastable states was proposed in the literature as one explanation for sorption-desorption hysteresis (SDH) of organic compounds on soils and sediments. When such metastable states freely exchange sorbate molecules with the surroundings and there is no spontaneous exit of a whole system from that state, it is possible to determine the extra Gibbs free energy (ΔGext) accumulated in a system due to the persistence of metastable states. A novel contribution of this paper is the characterization of SDH, in which the sorption isotherm (SI) and desorption isotherm (DI) do not close a loop, in terms of free energy needed to create “frozen” metastable states. To that end, liquid phase sorption of non-ionized sorbates is considered and by integrating over the sorption-desorption sequence, ΔGext and an integral hysteresis index (IHI) were obtained. Experimental data collected from the literature on aqueous sorption and desorption of polyaromatic hydrocarbons, triazines and ureas were examined on soils, sediments, organic matter-rich sorbents, montmorillonites and fullerene. Positive ΔGext values were obtained to quantify the thermodynamic potential for spontaneous exit from a metastable state that is not implemented due to the kinetic barriers. Relating the ΔGext values to sorbate molecular structure and sorbent properties may allow the prediction of SDH for various chemicals on sorbents in which the sorbate-induced perturbation of a sorbent matrix is believed to be a cause for the formation of persistent metastable states and the appearance of a non-closed sorption-desorption sequence. © 2018 Elsevier Ltd

Scientific Publication
You may also be interested in