Zoran S. Ilić
Modification of spectral quality via coloured shade nets can act as a physiological tool to modify the crop microenvironment and advance plant growth and yield. This literature review presents data on the physiological responses in vegetables linked to light quality under different coloured shade nets. The physiological parameters discussed in the review include: vegetable growth parameters (leaf area, leaf chlorophyll), tissue structure, fruit ripening, physiological disorders, pest and disease incidence, fruit quality parameters (soluble solids content and titratable acidity), phytochemicals (antioxidant activity, ascorbic acid, carotenoid and flavonoid contents) and aroma volatile compounds at harvest. Also, it is evident in the reviewed literature that light quality influences the biosynthesis, accumulation and retention of vegetable phytochemicals, as well as the decay development during storage. These new strategies to modulate light quality should be conveyed to vegetable producing farmers, thus allowing them to preserve the freshness and post-harvest quality of vegetables for an extended period of time, and to meet the consumers demand for vegetables with high nutritional value all year round. Research on light manipulation in horticultural systems is necessary for a sustainable and market-oriented open field and greenhouse vegetable production in the future.
Zoran S. Ilić
Modification of spectral quality via coloured shade nets can act as a physiological tool to modify the crop microenvironment and advance plant growth and yield. This literature review presents data on the physiological responses in vegetables linked to light quality under different coloured shade nets. The physiological parameters discussed in the review include: vegetable growth parameters (leaf area, leaf chlorophyll), tissue structure, fruit ripening, physiological disorders, pest and disease incidence, fruit quality parameters (soluble solids content and titratable acidity), phytochemicals (antioxidant activity, ascorbic acid, carotenoid and flavonoid contents) and aroma volatile compounds at harvest. Also, it is evident in the reviewed literature that light quality influences the biosynthesis, accumulation and retention of vegetable phytochemicals, as well as the decay development during storage. These new strategies to modulate light quality should be conveyed to vegetable producing farmers, thus allowing them to preserve the freshness and post-harvest quality of vegetables for an extended period of time, and to meet the consumers demand for vegetables with high nutritional value all year round. Research on light manipulation in horticultural systems is necessary for a sustainable and market-oriented open field and greenhouse vegetable production in the future.