חיפוש מתקדם

Ostrov, I.,  Biofilm Research Laboratory, Hebrew University – Hadassah, Jerusalem, Israel;

Biofilm-forming Bacillus species are often involved in contamination of dairy products and therefore present a major microbiological challenge in the field of food quality and safety. In this study, we sequenced and analyzed the genomes of milk- and non-milk-derived Bacillus strains, and evaluated their biofilm-formation potential in milk. Unlike non-dairy Bacillus isolates, the dairy-associated Bacillus strains were characterized by formation of robust submerged and air–liquid interface biofilm (pellicle) during growth in milk. Moreover, genome comparison analysis revealed notable differences in putative biofilm-associated determinants between the dairy and non-dairy Bacillus isolates, which correlated with biofilm phenotype. These results suggest that biofilm formation by Bacillus species might represent a presumable adaptation strategy to the dairy environment. © 2019 The Authors

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability
82

Ostrov, I.,  Biofilm Research Laboratory, Hebrew University – Hadassah, Jerusalem, Israel;

Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability

Biofilm-forming Bacillus species are often involved in contamination of dairy products and therefore present a major microbiological challenge in the field of food quality and safety. In this study, we sequenced and analyzed the genomes of milk- and non-milk-derived Bacillus strains, and evaluated their biofilm-formation potential in milk. Unlike non-dairy Bacillus isolates, the dairy-associated Bacillus strains were characterized by formation of robust submerged and air–liquid interface biofilm (pellicle) during growth in milk. Moreover, genome comparison analysis revealed notable differences in putative biofilm-associated determinants between the dairy and non-dairy Bacillus isolates, which correlated with biofilm phenotype. These results suggest that biofilm formation by Bacillus species might represent a presumable adaptation strategy to the dairy environment. © 2019 The Authors

Scientific Publication
You may also be interested in