נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Shifts in the composition of the microbiota of stored wheat grains in response to fumigation
Year:
2019
Source of publication :
Frontiers in Microbiology
Authors :
דרובי, סמיר
;
.
זקין, ורדה
;
.
סולנקי, מנוג' קומאר
;
.
סיונוב, אדוארד
;
.
Volume :
Co-Authors:

Abdelfattah, A., Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Calabria, Italy, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; Britzi, M., National Residue Control Laboratory, Kimron Veterinary Institute, Beit Dagan, Israel; Wisniewski, M., United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States;

Facilitators :
From page:
0
To page:
0
(
Total pages:
1
)
Abstract:

While the wheat-associated microbiome is of major agricultural importance, little is known about the alterations in wheat grain microbial community composition during storage. Characterization of the bacterial and fungal communities in stored wheat grains revealed the impact of phosphine fumigation, one of the most effective methods to eliminate insects in stored commodities, on the composition of the wheat grain microbiome. High-throughput amplicon sequencing of the bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) region was used to analyze the wheat grain microbiome at different times over as 6 months period of storage. Higher bacterial diversity was found across the samples during the first (immediately after harvest) and second (3 months later) time points, with a predominance of Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Planctomycetes. A two-fold decrease in the number of bacterial operational taxonomic units (OTUs) was observed in wheat grains at the last time point (6 months later), following phosphine treatment. In contrast to the effect of phosphine on bacteria, it did not affect fungal diversity in stored grains. The majority of fungal sequences were assigned to Ascomycota, followed by Basidiomycota, Glomeromycota, and unidentified fungi, which were evenly distributed throughout the storage period. Alpha and beta diversity analyses were confirmed by examination of the cultured microbial taxa obtained from the stored wheat grains. Mycotoxin analysis of wheat grains collected after phosphine fumigation revealed the presence of Fusarium toxins, primarily deoxynivalenol (DON). Several mycotoxigenic Fusarium spp. were also detected in the same samples. Results of the present study indicate that microbiome of stored, whole wheat grains was strongly affected by phosphine fumigation, which changed the structure of the microbial community leading to shifts in species composition toward mycotoxigenic strains. A better understanding of the complex interactions within the microbial communities of stored grains will assist in the development of novel biocontrol strategies to overcome mycotoxin contamination. Copyright © 2019 Solanki, Abdelfattah, Britzi, Zakin, Wisniewski, Droby and Sionov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Note:
Related Files :
microbiome
Microbiome analysis
Mycotoxigenic fungi
Mycotoxins
Phosphine fumigation
Stored wheat grain
עוד תגיות
תוכן קשור
More details
DOI :
10.3389/fmicb.2019.01098
Article number:
0
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
42802
Last updated date:
02/03/2022 17:27
Creation date:
24/07/2019 12:53
Scientific Publication
Shifts in the composition of the microbiota of stored wheat grains in response to fumigation

Abdelfattah, A., Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Calabria, Italy, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; Britzi, M., National Residue Control Laboratory, Kimron Veterinary Institute, Beit Dagan, Israel; Wisniewski, M., United States Department of Agriculture, Agricultural Research Service, Kearneysville, WV, United States;

Shifts in the composition of the microbiota of stored wheat grains in response to fumigation

While the wheat-associated microbiome is of major agricultural importance, little is known about the alterations in wheat grain microbial community composition during storage. Characterization of the bacterial and fungal communities in stored wheat grains revealed the impact of phosphine fumigation, one of the most effective methods to eliminate insects in stored commodities, on the composition of the wheat grain microbiome. High-throughput amplicon sequencing of the bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) region was used to analyze the wheat grain microbiome at different times over as 6 months period of storage. Higher bacterial diversity was found across the samples during the first (immediately after harvest) and second (3 months later) time points, with a predominance of Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Planctomycetes. A two-fold decrease in the number of bacterial operational taxonomic units (OTUs) was observed in wheat grains at the last time point (6 months later), following phosphine treatment. In contrast to the effect of phosphine on bacteria, it did not affect fungal diversity in stored grains. The majority of fungal sequences were assigned to Ascomycota, followed by Basidiomycota, Glomeromycota, and unidentified fungi, which were evenly distributed throughout the storage period. Alpha and beta diversity analyses were confirmed by examination of the cultured microbial taxa obtained from the stored wheat grains. Mycotoxin analysis of wheat grains collected after phosphine fumigation revealed the presence of Fusarium toxins, primarily deoxynivalenol (DON). Several mycotoxigenic Fusarium spp. were also detected in the same samples. Results of the present study indicate that microbiome of stored, whole wheat grains was strongly affected by phosphine fumigation, which changed the structure of the microbial community leading to shifts in species composition toward mycotoxigenic strains. A better understanding of the complex interactions within the microbial communities of stored grains will assist in the development of novel biocontrol strategies to overcome mycotoxin contamination. Copyright © 2019 Solanki, Abdelfattah, Britzi, Zakin, Wisniewski, Droby and Sionov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Scientific Publication
You may also be interested in