חיפוש מתקדם
Agronomy (Switzerland)

The olive growing sector is transitioning from traditional to intensive irrigated cultivation, dictating a need to reconsider orchard management practices including fertilization. Potassium (K) is an essential nutrient, typically found in high concentrations in plants. Orchard K fertilization requirements are commonly derived from the disparity between assumed tree requirements and extractable soil K. The long-term impact of insufficient fertilization on K available in the soil, growth, and yield of irrigated field-grown olive trees was evaluated over six consecutive seasons. Withholding of K fertilization led to lower exchangeable and soluble K concentrations in the soil and significantly impaired yield. The reduction in yield was attributed to reduced flowering and fruit set, resulting in a lower fruit number. Tree vegetative growth and flowering quality traits were not affected. In addition, trees not receiving K appeared to be more susceptible to alternate bearing. Following two seasons of omitting K fertilization, leaf K concentration did not decrease below the conventionally accepted sufficiency threshold for olive (0.8%). In spite of this, the trees produced significantly lower yields. Our results suggest that long-term insufficient K fertilization results in reduced soil available K and consequently impairs tree productivity. The results imply that the sufficiency threshold for K in diagnostic leaves should be reconsidered for intensive orchards. Moreover, the current method for K deficiency detection using leaf K concentration may be inadequate for intensive orchards. Integration of other parameters, such as fruit K content, leaf Na, and changes in soil exchangeable K content or sorption energy, may promote a more reliable analysis of orchard K nutritional status. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Long-term impact of potassium fertilization on soil and productivity in intensive olive cultivation
9
Long-term impact of potassium fertilization on soil and productivity in intensive olive cultivation

The olive growing sector is transitioning from traditional to intensive irrigated cultivation, dictating a need to reconsider orchard management practices including fertilization. Potassium (K) is an essential nutrient, typically found in high concentrations in plants. Orchard K fertilization requirements are commonly derived from the disparity between assumed tree requirements and extractable soil K. The long-term impact of insufficient fertilization on K available in the soil, growth, and yield of irrigated field-grown olive trees was evaluated over six consecutive seasons. Withholding of K fertilization led to lower exchangeable and soluble K concentrations in the soil and significantly impaired yield. The reduction in yield was attributed to reduced flowering and fruit set, resulting in a lower fruit number. Tree vegetative growth and flowering quality traits were not affected. In addition, trees not receiving K appeared to be more susceptible to alternate bearing. Following two seasons of omitting K fertilization, leaf K concentration did not decrease below the conventionally accepted sufficiency threshold for olive (0.8%). In spite of this, the trees produced significantly lower yields. Our results suggest that long-term insufficient K fertilization results in reduced soil available K and consequently impairs tree productivity. The results imply that the sufficiency threshold for K in diagnostic leaves should be reconsidered for intensive orchards. Moreover, the current method for K deficiency detection using leaf K concentration may be inadequate for intensive orchards. Integration of other parameters, such as fruit K content, leaf Na, and changes in soil exchangeable K content or sorption energy, may promote a more reliable analysis of orchard K nutritional status. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.

Scientific Publication
You may also be interested in