Mikheyev, A., Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan, Research School of Biology, Australian National University, Canberra, ACT, Australia.
While ectoparasitic Varroa mites cause minimal damage to their co-evolved ancestral host, the eastern honey bee (Apis cerana), they devastate their novel host, the western honey bee (Apis mellifera). Over several decades, the host switch caused worldwide population collapses, threatening global food security. Varroa management strategies have focused on breeding bees for tolerance. But, can Varroa overcome these counter-adaptations in a classic coevolutionary arms race? Despite increasing evidence for Varroa genetic diversity and evolvability, this eventuality has largely been neglected. We therefore suggest a more holistic paradigm for studying this host-parasite interaction, one in which ‘Varroa-tolerant’ bee traits should be viewed as a shared phenotype resulting from Varroa and honey bee interaction.
Mikheyev, A., Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan, Research School of Biology, Australian National University, Canberra, ACT, Australia.
While ectoparasitic Varroa mites cause minimal damage to their co-evolved ancestral host, the eastern honey bee (Apis cerana), they devastate their novel host, the western honey bee (Apis mellifera). Over several decades, the host switch caused worldwide population collapses, threatening global food security. Varroa management strategies have focused on breeding bees for tolerance. But, can Varroa overcome these counter-adaptations in a classic coevolutionary arms race? Despite increasing evidence for Varroa genetic diversity and evolvability, this eventuality has largely been neglected. We therefore suggest a more holistic paradigm for studying this host-parasite interaction, one in which ‘Varroa-tolerant’ bee traits should be viewed as a shared phenotype resulting from Varroa and honey bee interaction.