נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards
Year:
2018
Source of publication :
remote sensing (source)
Authors :
אלחנתי, ויקטור
;
.
בהט, עידן
;
.
בן-גל, אלון
;
.
הלמן, דוד
;
.
כהן, יפית
;
.
Volume :
10
Co-Authors:

Netzer, Y., Department of Agriculture and Oenology, Eastern R and D Center, Ariel, 40700, Israel, Department of Chemistry and Biotech Engineering, Ariel University, Ariel, 40700, Israel;

Peeters, A., TerraVision Lab, Midreshet Ben-Gurion, 8499000, Israel

Facilitators :
From page:
1
To page:
22
(
Total pages:
22
)
Abstract:

Spectral-based vegetation indices (VI) have been shown to be good proxies of grapevine stem water potential (Ψstem), assisting in irrigation decision-making for commercial vineyards. However, VI-Ψstem correlations are mostly reported at the leaf or canopy scales, using proximal canopy-based sensors or very-high-spatial resolution images derived from sensors mounted on small airplanes or drones. Here, for the first time, we take advantage of high-spatial resolution (3-m) near-daily images acquired from Planet’s nano-satellite constellation to derive VI-Ψstem correlations at the vineyard scale. Weekly Ψstem was measured along the growing season of 2017 in six vines each in 81 commercial vineyards and in 60 pairs of grapevines in a 2.4 ha experimental vineyard in Israel. The Clip application programming interface (API), provided by Planet, and the Google Earth Engine platform were used to derive spatially continuous time series of four VIs—GNDVI, NDVI, EVI and SAVI—in the 82 vineyards. Results show that per-week multivariable linear models using variables extracted from VI time series successfully tracked spatial variations in Ψstem across the experimental vineyard (Pearson’s-r = 0.45–0.84; N = 60). A simple linear regression model enabled monitoring seasonal changes in Ψstem along the growing season in the vineyard (r = 0.80–0.82). Planet VIs and seasonal Ψstem data from the 82 vineyards were used to derive a ‘global’ model for in-season monitoring of Ψstem at the vineyard-level (r = 0.78; RMSE = 18.5%; N = 970). The ‘global’ model, which requires only a few VI variables extracted from Planet images, may be used for real-time weekly assessment of Ψstem in Mediterranean vineyards, substantially improving the efficiency of conventional in-field monitoring efforts.

Note:
Related Files :
Google earth engine
Grapevine
irrigation
Planet
remote sensing
Stem water potential
Time-series
vineyard
Vitis / grapes
עוד תגיות
תוכן קשור
More details
DOI :
https://doi.org/10.3390/rs10101615
Article number:
1615
Affiliations:
Database:
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
49341
Last updated date:
02/03/2022 17:27
Creation date:
31/08/2020 09:12
Scientific Publication
Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards
10

Netzer, Y., Department of Agriculture and Oenology, Eastern R and D Center, Ariel, 40700, Israel, Department of Chemistry and Biotech Engineering, Ariel University, Ariel, 40700, Israel;

Peeters, A., TerraVision Lab, Midreshet Ben-Gurion, 8499000, Israel

Using Time Series of High-Resolution Planet Satellite Images to Monitor Grapevine Stem Water Potential in Commercial Vineyards

Spectral-based vegetation indices (VI) have been shown to be good proxies of grapevine stem water potential (Ψstem), assisting in irrigation decision-making for commercial vineyards. However, VI-Ψstem correlations are mostly reported at the leaf or canopy scales, using proximal canopy-based sensors or very-high-spatial resolution images derived from sensors mounted on small airplanes or drones. Here, for the first time, we take advantage of high-spatial resolution (3-m) near-daily images acquired from Planet’s nano-satellite constellation to derive VI-Ψstem correlations at the vineyard scale. Weekly Ψstem was measured along the growing season of 2017 in six vines each in 81 commercial vineyards and in 60 pairs of grapevines in a 2.4 ha experimental vineyard in Israel. The Clip application programming interface (API), provided by Planet, and the Google Earth Engine platform were used to derive spatially continuous time series of four VIs—GNDVI, NDVI, EVI and SAVI—in the 82 vineyards. Results show that per-week multivariable linear models using variables extracted from VI time series successfully tracked spatial variations in Ψstem across the experimental vineyard (Pearson’s-r = 0.45–0.84; N = 60). A simple linear regression model enabled monitoring seasonal changes in Ψstem along the growing season in the vineyard (r = 0.80–0.82). Planet VIs and seasonal Ψstem data from the 82 vineyards were used to derive a ‘global’ model for in-season monitoring of Ψstem at the vineyard-level (r = 0.78; RMSE = 18.5%; N = 970). The ‘global’ model, which requires only a few VI variables extracted from Planet images, may be used for real-time weekly assessment of Ψstem in Mediterranean vineyards, substantially improving the efficiency of conventional in-field monitoring efforts.

This article belongs to the Special Issue High Resolution Image Time Series for Novel Agricultural Applications

Scientific Publication
You may also be interested in