נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Reducing salinity of treated waste water with large scale desalination
Year:
2020
Source of publication :
Water Research
Authors :
בן-חור, מני
;
.
ברנשטיין, נירית
;
.
טנאי, יוסף
;
.
שטול-טראורינג, אליאב
;
.
Volume :
186
Co-Authors:

Cohen, Alice - Israel Nature and Parks Authority, Israel.

 

Facilitators :
From page:
1
To page:
12
(
Total pages:
12
)
Abstract:

Agriculture, the largest global water consumer, accounts for ~70% of freshwater use thereby considerably influencing water availability. The use of treated wastewater [TWW] for agricultural irrigation has been suggested as a possible solution to help mitigate water scarcity without disrupting food production. However, despite the benefits of TWW irrigation, it is often characterized by high salinity that can reduce crop performance and damage soil structure. In Israel, over 50% of the water used for irrigation is TWW, and a third of the produced TWW undergoes soil aquifer treatment [SAT], i.e., infiltration and percolation to groundwater through the soil before utilization for irrigation. In parallel, seawater desalination provides about 80% of the urban and industrial sector water use. These developments in Israel's water economy during the last three decades, accompanied by extensive governmental monitoring, enabled us to harness high-resolution nation-wide datasets to study the effects of the large-scale introduction of desalination and SAT on TWW quality and salinity in particular. The analyses revealed that large-scale desalination considerably reduced the salinity of TWW to levels similar to freshwater (up to 70% and 60% for Cl and Na, respectively). However, sodium absorption ratio remained unchanged due to the concurrent reductions of Na, Ca and Mg. Mg was reduced to levels that can potentially harm both crops and human health, while B concentrations increased to levels of possible toxicity to crops, suggesting the need for stringent requirements in the post-treatment process. Salinity of groundwater was increased by SAT in the long-term, but was reduced after the introduction of desalination. The results, encompassing almost three decades of water monitoring, suggest that high-quality TWW with a significant portion of desalinated base-water can provide groundwater salinity remediation services. 

Note:
Related Files :
Agriculture
irrigation
sustainability
water reuse
water treatment
עוד תגיות
תוכן קשור
More details
DOI :
10.1016/j.watres.2020.116322
Article number:
116322
Affiliations:
Database:
סקופוס
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
49348
Last updated date:
02/03/2022 17:27
Creation date:
31/08/2020 11:58
Scientific Publication
Reducing salinity of treated waste water with large scale desalination
186

Cohen, Alice - Israel Nature and Parks Authority, Israel.

 

Reducing salinity of treated waste water with large scale desalination

Agriculture, the largest global water consumer, accounts for ~70% of freshwater use thereby considerably influencing water availability. The use of treated wastewater [TWW] for agricultural irrigation has been suggested as a possible solution to help mitigate water scarcity without disrupting food production. However, despite the benefits of TWW irrigation, it is often characterized by high salinity that can reduce crop performance and damage soil structure. In Israel, over 50% of the water used for irrigation is TWW, and a third of the produced TWW undergoes soil aquifer treatment [SAT], i.e., infiltration and percolation to groundwater through the soil before utilization for irrigation. In parallel, seawater desalination provides about 80% of the urban and industrial sector water use. These developments in Israel's water economy during the last three decades, accompanied by extensive governmental monitoring, enabled us to harness high-resolution nation-wide datasets to study the effects of the large-scale introduction of desalination and SAT on TWW quality and salinity in particular. The analyses revealed that large-scale desalination considerably reduced the salinity of TWW to levels similar to freshwater (up to 70% and 60% for Cl and Na, respectively). However, sodium absorption ratio remained unchanged due to the concurrent reductions of Na, Ca and Mg. Mg was reduced to levels that can potentially harm both crops and human health, while B concentrations increased to levels of possible toxicity to crops, suggesting the need for stringent requirements in the post-treatment process. Salinity of groundwater was increased by SAT in the long-term, but was reduced after the introduction of desalination. The results, encompassing almost three decades of water monitoring, suggest that high-quality TWW with a significant portion of desalinated base-water can provide groundwater salinity remediation services. 

Scientific Publication
You may also be interested in