נגישות
menu      
חיפוש מתקדם
תחביר
חפש...
הספר "אוצר וולקני"
אודות
תנאי שימוש
ניהול
קהילה:
אסיף מאגר המחקר החקלאי
פותח על ידי קלירמאש פתרונות בע"מ -
Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater
Year:
2017
Authors :
גנות, יונתן
;
.
ניצן, עידו
;
.
קורצמן, דניאל
;
.
Volume :
21
Co-Authors:

Ran Holtzman - Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel

Noam Weisbrod - Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel

Yoram Katz - Mekorot, Water Company Ltd, Tel Aviv, 6713402, Israel

Facilitators :
From page:
4479
To page:
4493
(
Total pages:
15
)
Abstract:

We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015) of continuous intensive MAR (2.45  ×  106 m3 discharged to a 10.7 ha area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from  ∼  11 to  ∼  0.4 m d−1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater (turbidity  ∼  0.2 NTU, total dissolved solids  ∼  120 mg L−1) or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

Note:
Related Files :
aquifer
aquifers
Desalinated seawater
Infiltration
Managed aquifer recharge (MAR)
North of Israel
עוד תגיות
תוכן קשור
More details
DOI :
https://doi.org/10.5194/hess-21-4479-2017
Article number:
0
Affiliations:
Database:
Publication Type:
מאמר
;
.
Language:
אנגלית
Editors' remarks:
ID:
49504
Last updated date:
02/03/2022 17:27
Creation date:
03/09/2020 11:10
You may also be interested in
Scientific Publication
Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater
21

Ran Holtzman - Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel

Noam Weisbrod - Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel

Yoram Katz - Mekorot, Water Company Ltd, Tel Aviv, 6713402, Israel

Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater

We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015) of continuous intensive MAR (2.45  ×  106 m3 discharged to a 10.7 ha area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from  ∼  11 to  ∼  0.4 m d−1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater (turbidity  ∼  0.2 NTU, total dissolved solids  ∼  120 mg L−1) or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

Scientific Publication
You may also be interested in