Alberto L. Mancinelli, 
Zohara Yaniv, 
Phyllis Smith

Germination of the dark-germinating seeds of 3 varieties of tomato is controlled by the phytochrome system. Germination is inhibited by far red radiation and repromoted by red applied after far red. At low temperatures, 17 to 20°, a single, low energy far red irradiation is sufficient to inhibit germination in all 3 varieties. At higher temperatures far red is less effective in the inhibition of the germination of the tomato seeds. The phytochrome fraction present as PFR in the dark-germinating seeds of the Ace variety is about 40% of the total phytochrome present.

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Phytochrome and seed germination. I . Temperature dependence and relative Pfr levels in the germination of dark-germinating tomato seeds
42

Alberto L. Mancinelli, 
Zohara Yaniv, 
Phyllis Smith

Phytochrome and seed germination. I . Temperature dependence and relative Pfr levels in the germination of dark-germinating tomato seeds

Germination of the dark-germinating seeds of 3 varieties of tomato is controlled by the phytochrome system. Germination is inhibited by far red radiation and repromoted by red applied after far red. At low temperatures, 17 to 20°, a single, low energy far red irradiation is sufficient to inhibit germination in all 3 varieties. At higher temperatures far red is less effective in the inhibition of the germination of the tomato seeds. The phytochrome fraction present as PFR in the dark-germinating seeds of the Ace variety is about 40% of the total phytochrome present.

Scientific Publication