Alberto L. Mancinelli,
Zohara Yaniv,
Phyllis Smith
Germination of the dark-germinating seeds of 3 varieties of tomato is controlled by the phytochrome system. Germination is inhibited by far red radiation and repromoted by red applied after far red. At low temperatures, 17 to 20°, a single, low energy far red irradiation is sufficient to inhibit germination in all 3 varieties. At higher temperatures far red is less effective in the inhibition of the germination of the tomato seeds. The phytochrome fraction present as PFR in the dark-germinating seeds of the Ace variety is about 40% of the total phytochrome present.
Alberto L. Mancinelli,
Zohara Yaniv,
Phyllis Smith
Germination of the dark-germinating seeds of 3 varieties of tomato is controlled by the phytochrome system. Germination is inhibited by far red radiation and repromoted by red applied after far red. At low temperatures, 17 to 20°, a single, low energy far red irradiation is sufficient to inhibit germination in all 3 varieties. At higher temperatures far red is less effective in the inhibition of the germination of the tomato seeds. The phytochrome fraction present as PFR in the dark-germinating seeds of the Ace variety is about 40% of the total phytochrome present.