Steve J Perlman
Martha S Hunter
Einat Zchori-Fein
The best-known members of the bacterial genus Rickettsia are associates of blood-feeding arthropods that are pathogenic when transmitted to vertebrates. These species include the agents of acute human disease such as typhus and Rocky Mountain spotted fever. However, many other Rickettsia have been uncovered in recent surveys of bacteria associated with arthropods and other invertebrates; the hosts of these bacteria have no relationship with vertebrates. It is therefore perhaps more appropriate to consider Rickettsia as symbionts that are transmitted vertically in invertebrates, and secondarily as pathogens of vertebrates. In this review, we highlight the emerging diversity of Rickettsia species that are not associated with vertebrate pathogenicity. Phylogenetic analysis suggests multiple transitions between symbionts that are transmitted strictly vertically and those that exhibit mixed (horizontal and vertical) transmission. Rickettsia may thus be an excellent model system in which to study the evolution of transmission pathways. We also focus on the emergence of Rickettsia as a diverse reproductive manipulator of arthropods, similar to the closely related Wolbachia, including strains associated with male-killing, parthenogenesis, and effects on fertility. We emphasize some outstanding questions and potential research directions, and suggest ways in which the study of non-pathogenic Rickettsia can advance our understanding of their disease-causing relatives.
Steve J Perlman
Martha S Hunter
Einat Zchori-Fein
The best-known members of the bacterial genus Rickettsia are associates of blood-feeding arthropods that are pathogenic when transmitted to vertebrates. These species include the agents of acute human disease such as typhus and Rocky Mountain spotted fever. However, many other Rickettsia have been uncovered in recent surveys of bacteria associated with arthropods and other invertebrates; the hosts of these bacteria have no relationship with vertebrates. It is therefore perhaps more appropriate to consider Rickettsia as symbionts that are transmitted vertically in invertebrates, and secondarily as pathogens of vertebrates. In this review, we highlight the emerging diversity of Rickettsia species that are not associated with vertebrate pathogenicity. Phylogenetic analysis suggests multiple transitions between symbionts that are transmitted strictly vertically and those that exhibit mixed (horizontal and vertical) transmission. Rickettsia may thus be an excellent model system in which to study the evolution of transmission pathways. We also focus on the emergence of Rickettsia as a diverse reproductive manipulator of arthropods, similar to the closely related Wolbachia, including strains associated with male-killing, parthenogenesis, and effects on fertility. We emphasize some outstanding questions and potential research directions, and suggest ways in which the study of non-pathogenic Rickettsia can advance our understanding of their disease-causing relatives.