נגישות
menu      
חיפוש מתקדם
Frontiers in Environmental Science

Trachtengertz Lolita, Ratsin Shany, Oron Gideon, Bick Amos

The recent high demands for reuse of salty water for irrigation affected membrane producers to assess new potential technologies for undesirable physical, chemical, and biological contaminants removal. This paper studies the assembly options by the analytic hierarchy process (AHP) model and the multi-dimension scaling (MDS) techniques. A specialized form of MDS (CoPlot software) enables presentation of the AHP outcomes in a two dimensional space and the optimal model can be visualized clearly. Four types of 8” membranes were selected: (i) Nanofiltration low rejection and high flux (ESNA1-LF-LD, 86% rejection, 10,500 gpd); (ii) Nanofiltration medium rejection and medium flux (ESNA1-LF2-LD, 91% rejection, 8200 gpd); (iii) Reverse Osmosis high rejection and high flux (CPA5-MAX, 99.7 rejection, 12,000 gpd); and (iv) Reverse Osmosis medium rejection and extreme high flux (ESPA4-MAX, 99.2 rejection, 13,200 gpd). The results indicate that: (i) Nanofiltration membrane (High flux and Low rejection) can produce water for irrigation with valuable levels of nutrient ions and a reduction in the sodium absorption ratio (SAR), minimizing soil salinity; this is an attractive option for agricultural irrigation and is the optimal solution; and (ii) implementing the MDS approach with reference to the variables is consequently useful to characterize membrane system design.

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Brackish groundwater membrane system design for sustainable irrigation: optimal configuration selection using analytic hierarchy process and multi-dimension scaling
2

Trachtengertz Lolita, Ratsin Shany, Oron Gideon, Bick Amos

Brackish groundwater membrane system design for sustainable irrigation: optimal configuration selection using analytic hierarchy process and multi-dimension scaling

The recent high demands for reuse of salty water for irrigation affected membrane producers to assess new potential technologies for undesirable physical, chemical, and biological contaminants removal. This paper studies the assembly options by the analytic hierarchy process (AHP) model and the multi-dimension scaling (MDS) techniques. A specialized form of MDS (CoPlot software) enables presentation of the AHP outcomes in a two dimensional space and the optimal model can be visualized clearly. Four types of 8” membranes were selected: (i) Nanofiltration low rejection and high flux (ESNA1-LF-LD, 86% rejection, 10,500 gpd); (ii) Nanofiltration medium rejection and medium flux (ESNA1-LF2-LD, 91% rejection, 8200 gpd); (iii) Reverse Osmosis high rejection and high flux (CPA5-MAX, 99.7 rejection, 12,000 gpd); and (iv) Reverse Osmosis medium rejection and extreme high flux (ESPA4-MAX, 99.2 rejection, 13,200 gpd). The results indicate that: (i) Nanofiltration membrane (High flux and Low rejection) can produce water for irrigation with valuable levels of nutrient ions and a reduction in the sodium absorption ratio (SAR), minimizing soil salinity; this is an attractive option for agricultural irrigation and is the optimal solution; and (ii) implementing the MDS approach with reference to the variables is consequently useful to characterize membrane system design.

Scientific Publication
You may also be interested in