חיפוש מתקדם
Carbohydrate Polymers

Ainur N. Imangaliyeva
Aviad Sela
Evgeni Eltzov
Elena Poverenov

A new type of biocompatible buffers based on zwitterionic polyaminosaccharides is reported. The carboxy- and amino-groups containing carboxymethyl chitosan (CM-CS) was synthesized and reacted with hydrochloric/acetic acid resulting in CM-CS-HCl and CM-CS-HAc buffers with buffering capacity of 20.6 and 15.2 mM/pH. The new buffers were comprehensively characterized for their physicochemical properties and checked on enzymatic reactions of acetylcholinesterase (AChE) and alkaline phosphatase (ALP). Their performance was compared to the phosphate and Tris buffers. The chloride-free, CM-CS-HAc demonstrated excellent buffering activity with Michaelis constants of 0.50 and 1.00 mM and maximum reaction rates of 5.62 and 2.26 μmol/min/mL for AChE and ALP reactions, respectively. Toxicity studies on stress-sensitive bioreporter bacteria verified nontoxicity of CM-CS-HAc.

Zwitterionic polyaminosaccharides overcome drawbacks of monomeric buffers, such as interference with enzyme active sites, cell membrane injury and purification difficulties. Therefore, they may become the next generation of effective buffers for biological and biochemical applications.

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
The polyaminosaccharide-based buffers as a new type of zwitterionic buffering macromolecules for biochemical applications

Ainur N. Imangaliyeva
Aviad Sela
Evgeni Eltzov
Elena Poverenov

The polyaminosaccharide-based buffers as a new type of zwitterionic buffering macromolecules for biochemical applications

A new type of biocompatible buffers based on zwitterionic polyaminosaccharides is reported. The carboxy- and amino-groups containing carboxymethyl chitosan (CM-CS) was synthesized and reacted with hydrochloric/acetic acid resulting in CM-CS-HCl and CM-CS-HAc buffers with buffering capacity of 20.6 and 15.2 mM/pH. The new buffers were comprehensively characterized for their physicochemical properties and checked on enzymatic reactions of acetylcholinesterase (AChE) and alkaline phosphatase (ALP). Their performance was compared to the phosphate and Tris buffers. The chloride-free, CM-CS-HAc demonstrated excellent buffering activity with Michaelis constants of 0.50 and 1.00 mM and maximum reaction rates of 5.62 and 2.26 μmol/min/mL for AChE and ALP reactions, respectively. Toxicity studies on stress-sensitive bioreporter bacteria verified nontoxicity of CM-CS-HAc.

Zwitterionic polyaminosaccharides overcome drawbacks of monomeric buffers, such as interference with enzyme active sites, cell membrane injury and purification difficulties. Therefore, they may become the next generation of effective buffers for biological and biochemical applications.

Scientific Publication
You may also be interested in