Carmit Ziv
Amnon Lers
Elazar Fallik
Ilan Paran
Improved postharvest storage is a major target for pepper-crop production. The three main components of postharvest improvement of pepper fruit are reducing water-loss rate, reducing chilling susceptibility, and increasing resistance to pathogens. To date, a small number of Quantitative Trait Locus (QTL) studies have been reported for reduced water loss and enhanced tolerance to chilling and anthracnose. More effort is needed to screen germplasm collections for accessions with improved postharvest traits. Molecular studies have enabled the identification of candidate genes conferring reduced susceptibility to chilling injury and pathogen infection in pepper fruit, and in related crops such as tomato — which may be implemented in pepper. Manipulation of the activity of these genes by genome editing can improve postharvest pepper quality.
Carmit Ziv
Amnon Lers
Elazar Fallik
Ilan Paran
Improved postharvest storage is a major target for pepper-crop production. The three main components of postharvest improvement of pepper fruit are reducing water-loss rate, reducing chilling susceptibility, and increasing resistance to pathogens. To date, a small number of Quantitative Trait Locus (QTL) studies have been reported for reduced water loss and enhanced tolerance to chilling and anthracnose. More effort is needed to screen germplasm collections for accessions with improved postharvest traits. Molecular studies have enabled the identification of candidate genes conferring reduced susceptibility to chilling injury and pathogen infection in pepper fruit, and in related crops such as tomato — which may be implemented in pepper. Manipulation of the activity of these genes by genome editing can improve postharvest pepper quality.