חיפוש מתקדם
biology

Aviv Asher

Matan Fialko

Florin Fares

Uzi Moallem

Shamai Yaacoby

Roee Gutman

 

Fatty acid levels in milk vary between day and night milking. Many dairy cows are still kept under white light-emitting diode (W-LED) illumination throughout the night, although it is known to disrupt endogenous circadian rhythms. We investigated the effects of whole-night W-LED illumination (125 lux) on milk yield and circadian composition, compared to a natural light–dark (LD) cycle of 10 h light. Mid–late lactation cows (n = 34) that were exposed to natural LD cycle showed circadian variation in milk fat composition, characterized by higher health-promoting monounsaturated fatty acid (MUFA; 24.2 ± 0.4 vs. 23.2 ± 0.4 g/100 g fat, p < 0.001) and lower saturated fatty acid levels (71.2 ± 0.4 vs. 72.5 ± 0.4, p < 0.001) at 13:30 h (day milk) than at 03:30 h (night milk). Compared to natural LD (n = 16), W-LED (n = 18) did not affect milk production or milk fat yields, yet abolished the milking time variation in milk fat composition towards a less healthy fatty acid profile. This lowered MUFA levels of day milk (23.8 ± 0.4 vs. 26.7 ± 0.4, p < 0.01). Therefore, W-LED has no commercial advantage over the tested natural LD cycle, and conversely, even shows circadian disruption. Accordingly, a natural LD cycle of 10 h light is preferable over W-LED from the perspective of cost savings, the cows’ well-being, and preserving the natural milk fat profile, as the nutritional value of the day milk is slightly higher.

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
The Effect of Short-Wavelength White LED Illumination throughout the Night on the Milk Fatty Acid Profile of High-Yielding Dairy Cows

Aviv Asher

Matan Fialko

Florin Fares

Uzi Moallem

Shamai Yaacoby

Roee Gutman

 

The Effect of Short-Wavelength White LED Illumination throughout the Night on the Milk Fatty Acid Profile of High-Yielding Dairy Cows

Fatty acid levels in milk vary between day and night milking. Many dairy cows are still kept under white light-emitting diode (W-LED) illumination throughout the night, although it is known to disrupt endogenous circadian rhythms. We investigated the effects of whole-night W-LED illumination (125 lux) on milk yield and circadian composition, compared to a natural light–dark (LD) cycle of 10 h light. Mid–late lactation cows (n = 34) that were exposed to natural LD cycle showed circadian variation in milk fat composition, characterized by higher health-promoting monounsaturated fatty acid (MUFA; 24.2 ± 0.4 vs. 23.2 ± 0.4 g/100 g fat, p < 0.001) and lower saturated fatty acid levels (71.2 ± 0.4 vs. 72.5 ± 0.4, p < 0.001) at 13:30 h (day milk) than at 03:30 h (night milk). Compared to natural LD (n = 16), W-LED (n = 18) did not affect milk production or milk fat yields, yet abolished the milking time variation in milk fat composition towards a less healthy fatty acid profile. This lowered MUFA levels of day milk (23.8 ± 0.4 vs. 26.7 ± 0.4, p < 0.01). Therefore, W-LED has no commercial advantage over the tested natural LD cycle, and conversely, even shows circadian disruption. Accordingly, a natural LD cycle of 10 h light is preferable over W-LED from the perspective of cost savings, the cows’ well-being, and preserving the natural milk fat profile, as the nutritional value of the day milk is slightly higher.

Scientific Publication
You may also be interested in