חיפוש מתקדם
Nature climate change
  • Manuel Delgado-Baquerizo, 
  • Pablo García-Palacios, 
  • Mark A. Bradford, 
  • David J. Eldridge, 
  • Miguel Berdugo, 
  • Tadeo Sáez-Sandino, 
  • Yu-Rong Liu, 
  • Fernando Alfaro, 
  • Sebastian Abades, 
  • Adebola R. Bamigboye, 
  • Felipe Bastida, 
  • José L. Blanco-Pastor, 
  • Jorge Duran, 
  • Juan J. Gaitan, 
  • Javier G. Illán, 
  • Tine Grebenc, 
  • Thulani P. Makhalanyane, 
  • Durgesh Kumar Jaiswal, 
  • Tina U. Nahberger, 
  • Gabriel F. Peñaloza-Bojacá, 
  • Ana Rey, 
  • Alexandra Rodríguez, 
  • Christina Siebe, 
  • Alberto L. Teixido, 
  • Wei Sun, 
  • Pankaj Trivedi, 
  • Jay Prakash Verma, 
  • Ling Wang, 
  • Jianyong Wang, 
  • Tianxue Yang, 
  • Eli Zaady, 
  • Xiaobing Zhou, 
  • Xin-Quan Zhou 
  • César Plaza 

Urban greenspaces support multiple nature-based services, many of which depend on the amount of soil carbon (C). Yet, the environmental drivers of soil C and its sensitivity to warming are still poorly understood globally. Here we use soil samples from 56 paired urban greenspaces and natural ecosystems worldwide and combine soil C concentration and size fractionation measures with metagenomics and warming incubations. We show that surface soils in urban and natural ecosystems sustain similar C concentrations that follow comparable negative relationships with temperature. Plant productivity’s contribution to explaining soil C was higher in natural ecosystems, while in urban ecosystems, the soil microbial biomass had the greatest explanatory power. Moreover, the soil microbiome supported a faster C mineralization rate with experimental warming in urban greenspaces compared with natural ecosystems. Consequently, urban management strategies should consider the soil microbiome to maintain soil C and related ecosystem services.

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide
  • Manuel Delgado-Baquerizo, 
  • Pablo García-Palacios, 
  • Mark A. Bradford, 
  • David J. Eldridge, 
  • Miguel Berdugo, 
  • Tadeo Sáez-Sandino, 
  • Yu-Rong Liu, 
  • Fernando Alfaro, 
  • Sebastian Abades, 
  • Adebola R. Bamigboye, 
  • Felipe Bastida, 
  • José L. Blanco-Pastor, 
  • Jorge Duran, 
  • Juan J. Gaitan, 
  • Javier G. Illán, 
  • Tine Grebenc, 
  • Thulani P. Makhalanyane, 
  • Durgesh Kumar Jaiswal, 
  • Tina U. Nahberger, 
  • Gabriel F. Peñaloza-Bojacá, 
  • Ana Rey, 
  • Alexandra Rodríguez, 
  • Christina Siebe, 
  • Alberto L. Teixido, 
  • Wei Sun, 
  • Pankaj Trivedi, 
  • Jay Prakash Verma, 
  • Ling Wang, 
  • Jianyong Wang, 
  • Tianxue Yang, 
  • Eli Zaady, 
  • Xiaobing Zhou, 
  • Xin-Quan Zhou 
  • César Plaza 
Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide

Urban greenspaces support multiple nature-based services, many of which depend on the amount of soil carbon (C). Yet, the environmental drivers of soil C and its sensitivity to warming are still poorly understood globally. Here we use soil samples from 56 paired urban greenspaces and natural ecosystems worldwide and combine soil C concentration and size fractionation measures with metagenomics and warming incubations. We show that surface soils in urban and natural ecosystems sustain similar C concentrations that follow comparable negative relationships with temperature. Plant productivity’s contribution to explaining soil C was higher in natural ecosystems, while in urban ecosystems, the soil microbial biomass had the greatest explanatory power. Moreover, the soil microbiome supported a faster C mineralization rate with experimental warming in urban greenspaces compared with natural ecosystems. Consequently, urban management strategies should consider the soil microbiome to maintain soil C and related ecosystem services.

Scientific Publication
You may also be interested in