נגישות
menu      
חיפוש מתקדם
Algal Research

Olubunmi E. Adejimi
Giji Sadhasivam
Ze'ev Schmilovitch
Orr H. Shapiro
Ittai Herrmann 

In the mass production systems of microalgal species, it is important to ensure the safety and quality of the biomass and product. This requires effective monitoring tools that are sensitive, rapid and simple to use. In this study, hyperspectral transmittance spectroscopy (HTS) was applied for the detection, cell density quantification and classification of algal and cyanobacterial species. A database of HTS data was assembled from samples of seven algal and cyanobacterial species at different cell densities and used for quantifying and classifying the species, using chemometric and machine learning algorithms. The results obtained showed the ability to quantify the species with a detection limit of 104 cells/mL for the support vector machine models applied, and classify the species at concentrations >105 cells/mL. The current study suggests that HTS is applicable for cell density quantification. HTS was used to distinguish between cell cultures of cyanobacteria and algae and was further able to distinguish between cyanobacteria species as well as algal species. In addition, reducing the dimensions (number of spectral bands) of HTS data using feature selection and aggregation improved the classification accuracy. Thus, HTS is recommended as an effective tool for monitoring and management of microalgal bioreactors.

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Applying hyperspectral transmittance for inter-genera classification of cyanobacterial and algal cultures
71

Olubunmi E. Adejimi
Giji Sadhasivam
Ze'ev Schmilovitch
Orr H. Shapiro
Ittai Herrmann 

Applying hyperspectral transmittance for inter-genera classification of cyanobacterial and algal cultures

In the mass production systems of microalgal species, it is important to ensure the safety and quality of the biomass and product. This requires effective monitoring tools that are sensitive, rapid and simple to use. In this study, hyperspectral transmittance spectroscopy (HTS) was applied for the detection, cell density quantification and classification of algal and cyanobacterial species. A database of HTS data was assembled from samples of seven algal and cyanobacterial species at different cell densities and used for quantifying and classifying the species, using chemometric and machine learning algorithms. The results obtained showed the ability to quantify the species with a detection limit of 104 cells/mL for the support vector machine models applied, and classify the species at concentrations >105 cells/mL. The current study suggests that HTS is applicable for cell density quantification. HTS was used to distinguish between cell cultures of cyanobacteria and algae and was further able to distinguish between cyanobacteria species as well as algal species. In addition, reducing the dimensions (number of spectral bands) of HTS data using feature selection and aggregation improved the classification accuracy. Thus, HTS is recommended as an effective tool for monitoring and management of microalgal bioreactors.

Scientific Publication
You may also be interested in