חיפוש מתקדם
Bulletin of Entomological Research

A. Sadowsky, S. Dobrinin, T. Ticuchinski and J.A. Byers

The lesser date moth (LDM) Batrachedra amydraula is a significant pest of date palm fruits. Previously, detection and monitoring of the pest was inaccurate due to high costs of sampling with lifting machines. We report a practical system for detection and monitoring of LDM based on pheromone traps and relevant models. Dose–response experiments with LDM pheromone traps indicated a 1 mg lure is optimal for monitoring. Delta traps with adhesive covering their entire inner surface gave the highest captures while trap colour was unimportant. Sampling pheromone traps throughout the night indicated male flight began at 1:00–2:00 and reached a peak 2 h before sunrise. Monitoring traps exposed all year long in Israel revealed three generations with different abundance. Trapping transects in a date plantation indicated interference from a monitoring trap became minimal at distances >27 m away. Inter-trap distances closer than this may lower efficiency of monitoring and mass trapping in control programs. Our estimate of the circular effective attraction radius (EARc) of a 1 mg delta trap for LDM (3.43 m) shows this bait is among the most attractive compared with baits for other insects. We developed encounter-rate equations with the pheromone trap EARc to model the interplay between population levels, trap density and captures that are useful for detection of invasive LDM and its control by mass trapping. The integrated methodologies are applicable to many pest species.

פותח על ידי קלירמאש פתרונות בע"מ -
הספר "אוצר וולקני"
אודות
תנאי שימוש
Monitoring and mass-trapping methodologies using pheromones: the lesser date moth Batrachedra amydraula
108

A. Sadowsky, S. Dobrinin, T. Ticuchinski and J.A. Byers

Monitoring and mass-trapping methodologies using pheromones: the lesser date moth Batrachedra amydraula

The lesser date moth (LDM) Batrachedra amydraula is a significant pest of date palm fruits. Previously, detection and monitoring of the pest was inaccurate due to high costs of sampling with lifting machines. We report a practical system for detection and monitoring of LDM based on pheromone traps and relevant models. Dose–response experiments with LDM pheromone traps indicated a 1 mg lure is optimal for monitoring. Delta traps with adhesive covering their entire inner surface gave the highest captures while trap colour was unimportant. Sampling pheromone traps throughout the night indicated male flight began at 1:00–2:00 and reached a peak 2 h before sunrise. Monitoring traps exposed all year long in Israel revealed three generations with different abundance. Trapping transects in a date plantation indicated interference from a monitoring trap became minimal at distances >27 m away. Inter-trap distances closer than this may lower efficiency of monitoring and mass trapping in control programs. Our estimate of the circular effective attraction radius (EARc) of a 1 mg delta trap for LDM (3.43 m) shows this bait is among the most attractive compared with baits for other insects. We developed encounter-rate equations with the pheromone trap EARc to model the interplay between population levels, trap density and captures that are useful for detection of invasive LDM and its control by mass trapping. The integrated methodologies are applicable to many pest species.

Scientific Publication
You may also be interested in