נגישות
menu      
Advanced Search
Bulletin of Entomological Research
Rempoulakis, P., Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia, Department of Entomology, Institute of Plant Protection, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
Sela (Saldinger), S., Microbial Food-Safety Research Unit, Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
Nemny-Lavy, E., Department of Entomology, Institute of Plant Protection, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
Pinto, R., Microbial Food-Safety Research Unit, Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
Birke, A., Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico Biomimic®, Instituto de Ecología, A.C., Apartado Postal 63, 91000 Xalapa, Veracruz, Mexico
Nestel, D., Department of Entomology, Institute of Plant Protection, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
The present study investigated the patterns of microorganisms in an artificial larval diet during Dacus ciliatus (Diptera; Tephritidae) larval development. Microbial population contents in the diet of total heterotrophic bacteria, yeast and molds, coliform and lactobacilli, and their dynamics during development, were monitored. Initially, the microbial composition in diet trays failing to produce viable pupae and in trays successfully producing pupae and adult flies was characterized. The failing diet trays contained large populations of lactobacilli that increased during larval development, and low populations of coliforms. In contrast, the successful diet showed an increasing population of coliforms and a low, or undetected, population of lactobacilli. To study the hypothesis that lactobacilli affect D. ciliatus larval development, we conducted controlled inoculation experiments in which Lactobacillus plantarum was added into fresh diet at the time of egg seeding. L. plantarum inoculated trays showed no production of D. ciliatus. Control trays without lactobacilli inoculation showed variable results. One tray successfully produced viable pupae and adults, and showed a slight and slow increase in the indigenous populations of lactobacilli. The second tray, however, failed to produce pupae and showed a fast increase of the indigenous lactobacilli to very high levels. Monitored pH trends in L. plantarum-inoculated diet showed a sharp pH decrease during the first 4 days of larval development from 5 to less than 4 units, while successful diet, producing viable D. ciliatus pupae and adults, showed a moderate pH drop during most of the larval development period. The paper discusses the possible ecological interactions between D. ciliatus larvae, the microbial content of the diet and the physical properties of the diet. The discussion also points out at the usefulness of this approach in understanding and managing mass production parameters of tephritid fruit flies industrial diets used for Sterile Insect Technique. Copyright © Cambridge University Press 2017
Powered by ClearMash Solutions Ltd -
Volcani treasures
About
Terms of use
Microbial composition affects the performance of an artificial Tephritid larval diet
108
Rempoulakis, P., Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia, Department of Entomology, Institute of Plant Protection, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
Sela (Saldinger), S., Microbial Food-Safety Research Unit, Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
Nemny-Lavy, E., Department of Entomology, Institute of Plant Protection, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
Pinto, R., Microbial Food-Safety Research Unit, Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
Birke, A., Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico Biomimic®, Instituto de Ecología, A.C., Apartado Postal 63, 91000 Xalapa, Veracruz, Mexico
Nestel, D., Department of Entomology, Institute of Plant Protection, The Volcani Center, ARO, P. O. Box 15159, Rishon LeZiyyon 7528809, Israel
Microbial composition affects the performance of an artificial Tephritid larval diet
The present study investigated the patterns of microorganisms in an artificial larval diet during Dacus ciliatus (Diptera; Tephritidae) larval development. Microbial population contents in the diet of total heterotrophic bacteria, yeast and molds, coliform and lactobacilli, and their dynamics during development, were monitored. Initially, the microbial composition in diet trays failing to produce viable pupae and in trays successfully producing pupae and adult flies was characterized. The failing diet trays contained large populations of lactobacilli that increased during larval development, and low populations of coliforms. In contrast, the successful diet showed an increasing population of coliforms and a low, or undetected, population of lactobacilli. To study the hypothesis that lactobacilli affect D. ciliatus larval development, we conducted controlled inoculation experiments in which Lactobacillus plantarum was added into fresh diet at the time of egg seeding. L. plantarum inoculated trays showed no production of D. ciliatus. Control trays without lactobacilli inoculation showed variable results. One tray successfully produced viable pupae and adults, and showed a slight and slow increase in the indigenous populations of lactobacilli. The second tray, however, failed to produce pupae and showed a fast increase of the indigenous lactobacilli to very high levels. Monitored pH trends in L. plantarum-inoculated diet showed a sharp pH decrease during the first 4 days of larval development from 5 to less than 4 units, while successful diet, producing viable D. ciliatus pupae and adults, showed a moderate pH drop during most of the larval development period. The paper discusses the possible ecological interactions between D. ciliatus larvae, the microbial content of the diet and the physical properties of the diet. The discussion also points out at the usefulness of this approach in understanding and managing mass production parameters of tephritid fruit flies industrial diets used for Sterile Insect Technique. Copyright © Cambridge University Press 2017
Scientific Publication
You may also be interested in