נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila
Year:
2006
Source of publication :
Plant, Cell and Environment
Authors :
Raveh, Eran
;
.
Volume :
29
Co-Authors:
Kant, S., Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
Kant, P., Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
Raveh, E., Institute of Horticulture, Agricultural Research Organization, Gilat Research Station, D.N. Negev, 85280, Israel
Barak, S., Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
Facilitators :
From page:
1220
To page:
1234
(
Total pages:
15
)
Abstract:
Salt-sensitive glycophytes and salt-tolerant halophytes employ common mechanisms to cope with salinity, and it is hypothesized that differences in salt tolerance arise because of changes in the regulation of a basic set of salt tolerance genes. We explored the expression of genes involved in two key salt tolerance mechanisms in Arabidopsis thaliana and the halophytic A. thaliana relative model system (ARMS), Thellungiella halophila. Salt overly sensitive 1 (SOS1) is a plasma membrane Na+/H+ antiporter that retrieves and loads Na+ ions from and into the xylem. Shoot SOS1 transcript was more strongly induced by salt in T. halophila while root SOS1 was constitutively higher in unstressed T. halophila. This is consistent with a lower salt-induced rise in T. halophila xylem sap Na+ concentration than in A. thaliana. Thellungiella halophila contained higher unstressed levels of the compatible osmolyte proline than A. thaliana, while under salt stress, T. halophila accumulated more proline mainly in shoots. Expression of the A. thaliana ortholog of proline dehydrogenase (PDH), involved in proline catabolism, was undetectable in T. halophila shoots. The PDH enzyme activity was lower and T. halophila seedlings were hypersensitive to exogenous proline, indicating repression of proline catabolism in T. halophila. Our results suggest that differential gene expression between glycophytes and halophytes contributes to the salt tolerance of halophytes. © 2006 Blackwell Publishing Ltd.
Note:
Related Files :
arabidopsis
Arabidopsis thaliana
biosynthesis
Brassicaceae
Gene
gene expression
Genetics
metabolism
salt stress
Show More
Related Content
More details
DOI :
10.1111/j.1365-3040.2006.01502.x
Article number:
Affiliations:
Database:
Scopus
Publication Type:
article
;
.
Language:
English
Editors' remarks:
ID:
27319
Last updated date:
02/03/2022 17:27
Creation date:
17/04/2018 00:29
You may also be interested in
Scientific Publication
Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila
29
Kant, S., Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
Kant, P., Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
Raveh, E., Institute of Horticulture, Agricultural Research Organization, Gilat Research Station, D.N. Negev, 85280, Israel
Barak, S., Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila
Salt-sensitive glycophytes and salt-tolerant halophytes employ common mechanisms to cope with salinity, and it is hypothesized that differences in salt tolerance arise because of changes in the regulation of a basic set of salt tolerance genes. We explored the expression of genes involved in two key salt tolerance mechanisms in Arabidopsis thaliana and the halophytic A. thaliana relative model system (ARMS), Thellungiella halophila. Salt overly sensitive 1 (SOS1) is a plasma membrane Na+/H+ antiporter that retrieves and loads Na+ ions from and into the xylem. Shoot SOS1 transcript was more strongly induced by salt in T. halophila while root SOS1 was constitutively higher in unstressed T. halophila. This is consistent with a lower salt-induced rise in T. halophila xylem sap Na+ concentration than in A. thaliana. Thellungiella halophila contained higher unstressed levels of the compatible osmolyte proline than A. thaliana, while under salt stress, T. halophila accumulated more proline mainly in shoots. Expression of the A. thaliana ortholog of proline dehydrogenase (PDH), involved in proline catabolism, was undetectable in T. halophila shoots. The PDH enzyme activity was lower and T. halophila seedlings were hypersensitive to exogenous proline, indicating repression of proline catabolism in T. halophila. Our results suggest that differential gene expression between glycophytes and halophytes contributes to the salt tolerance of halophytes. © 2006 Blackwell Publishing Ltd.
Scientific Publication
You may also be interested in