נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Soil-aquifer phenomena affecting groundwater under vertisols: A review
Year:
2016
Authors :
Kurtzman, Daniel
;
.
Volume :
20
Co-Authors:
Kurtzman, D., Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, P.O. Box 6, Bet Dagan, Israel
Baram, S., Dept. of Land, Air and Water Resources, University of California, Davis, CA, United States
Dahan, O., Dept. of Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben Gurion University of the Negev, Sde Boker Campus, Negev, Israel
Facilitators :
From page:
1
To page:
12
(
Total pages:
12
)
Abstract:
Vertisols are cracking clayey soils that (i) usually form in alluvial lowlands where, normally, groundwater pools into aquifers; (ii) have different types of voids (due to cracking), which make flow and transport of water, solutes and gas complex; and (iii) are regarded as fertile soils in many areas. The combination of these characteristics results in the unique soil-aquifer phenomena that are highlighted and summarized in this review. The review is divided into the following four sections: (1) soil cracks as preferential pathways for water and contaminants: in this section lysimeter-to basin-scale observations that show the significance of cracks as preferential-flow paths in vertisols, which bypass matrix blocks in the unsaturated zone, are summarized. Relatively fresh-water recharge and groundwater contamination from these fluxes and their modeling are reviewed; (2) soil cracks as deep evaporators and unsaturated-zone salinity: deep sediment samples under uncultivated vertisols in semiarid regions reveal a dry (immobile), saline matrix, partly due to enhanced evaporation through soil cracks. Observations of this phenomenon are compiled in this section and the mechanism of evapoconcentration due to air flow in the cracks is discussed; (3) impact of cultivation on flushing of the unsaturated zone and aquifer salinization: the third section examines studies reporting that land-use change of vertisols from native land to cropland promotes greater fluxes through the saline unsaturated-zone matrix, eventually flushing salts to the aquifer. Different degrees of salt flushing are assessed as well as aquifer salinization on different scales, and a comparison is made with aquifers under other soils; (4) relatively little nitrate contamination in aquifers under vertisols: in this section we turn the light on observations showing that aquifers under cultivated vertisols are somewhat resistant to groundwater contamination by nitrate (the major agriculturally related groundwater problem). Denitrification is probably the main mechanism supporting this resistance, whereas a certain degree of anion-exchange capacity may have a retarding effect as well. © 2016 Author(s).
Note:
Related Files :
aquifers
groundwater
hydrogeology
Nitrate contamination
Nitrates
saline water
Soils
Show More
Related Content
More details
DOI :
10.5194/hess-20-1-2016
Article number:
Affiliations:
Database:
Scopus
Publication Type:
Review
;
.
Language:
English
Editors' remarks:
ID:
28836
Last updated date:
02/03/2022 17:27
Creation date:
17/04/2018 00:42
Scientific Publication
Soil-aquifer phenomena affecting groundwater under vertisols: A review
20
Kurtzman, D., Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, P.O. Box 6, Bet Dagan, Israel
Baram, S., Dept. of Land, Air and Water Resources, University of California, Davis, CA, United States
Dahan, O., Dept. of Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben Gurion University of the Negev, Sde Boker Campus, Negev, Israel
Soil-aquifer phenomena affecting groundwater under vertisols: A review
Vertisols are cracking clayey soils that (i) usually form in alluvial lowlands where, normally, groundwater pools into aquifers; (ii) have different types of voids (due to cracking), which make flow and transport of water, solutes and gas complex; and (iii) are regarded as fertile soils in many areas. The combination of these characteristics results in the unique soil-aquifer phenomena that are highlighted and summarized in this review. The review is divided into the following four sections: (1) soil cracks as preferential pathways for water and contaminants: in this section lysimeter-to basin-scale observations that show the significance of cracks as preferential-flow paths in vertisols, which bypass matrix blocks in the unsaturated zone, are summarized. Relatively fresh-water recharge and groundwater contamination from these fluxes and their modeling are reviewed; (2) soil cracks as deep evaporators and unsaturated-zone salinity: deep sediment samples under uncultivated vertisols in semiarid regions reveal a dry (immobile), saline matrix, partly due to enhanced evaporation through soil cracks. Observations of this phenomenon are compiled in this section and the mechanism of evapoconcentration due to air flow in the cracks is discussed; (3) impact of cultivation on flushing of the unsaturated zone and aquifer salinization: the third section examines studies reporting that land-use change of vertisols from native land to cropland promotes greater fluxes through the saline unsaturated-zone matrix, eventually flushing salts to the aquifer. Different degrees of salt flushing are assessed as well as aquifer salinization on different scales, and a comparison is made with aquifers under other soils; (4) relatively little nitrate contamination in aquifers under vertisols: in this section we turn the light on observations showing that aquifers under cultivated vertisols are somewhat resistant to groundwater contamination by nitrate (the major agriculturally related groundwater problem). Denitrification is probably the main mechanism supporting this resistance, whereas a certain degree of anion-exchange capacity may have a retarding effect as well. © 2016 Author(s).
Scientific Publication
You may also be interested in