נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Fusion of membrane vesicles bearing only the influenza hemagglutinin with erythrocytes, living cultured cells, and liposomes
Year:
1987
Source of publication :
Journal of Biological Chemistry
Authors :
Lapidot, Moshe
;
.
Volume :
262
Co-Authors:
Lapidot, M., Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
Nussbaum, O., Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
Loyter, A., Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
Facilitators :
From page:
13736
To page:
13741
(
Total pages:
6
)
Abstract:
Membrane vesicles, bearing only the influenza viral hemagglutinin glycoprotein, were reconstituted following solubilization of intact virions with Triton X-100. The viral hemagglutinin glycoprotein was separated from the neuraminidase glycoprotein by agarose sulfanilic acid column. The hemagglutinin glycoprotein obtained was homogenous in gel electrophoresis and devoid of any neuraminidase activity. A quantitative determination revealed that the hemolytic activity of the hemagglutinin vesicles was comparable to that of intact virions. Incubation of fluorescently labeled hemagglutinin vesicles with human erythrocyte ghosts (HEG) or with liposomes composed of phosphatidylcholine/cholesterol or phosphatidylcholine/cholesterol/gangliosides, at pH 5.0 but not at pH 7.4, resulted in fluorescence dequenching. Very little, if any, fluorescence dequenching was observed upon incubation of fluorescently labeled HA vesicles with neuraminidase or glutaraldehyde-treated HEG or with liposomes composed only of phosphatidylcholine. Hemagglutinin vesicles were rendered non-hemolytic by treatment with NH2OH or glutaraldehyde or by incubation at 85 °C or low pH. No fluorescence dequenching was observed following incubation of non-hemolytic hemagglutinin vesicles with HEG or liposomes. These results clearly suggest that the fluorescence dequenching observed is due to fusion between the hemagglutinin vesicles and the recipient membranes. Incubation of hemagglutinin vesicles with living cultured cells, i.e. mouse lymphoma S-49 cells, at pH 5.0 as well as at pH 7.4, also resulted in fluorescence dequenching. The fluorescence dequenching observed at pH 7.4 was inhibited by lysosomotropic agents (methylamine and ammonium chloride) as well as by EDTA and NaN3, indicating that it is due to fusion of hemagglutinin vesicles taken into the cells by endocytosis.
Note:
Related Files :
Animal
erythrocyte membrane
hemagglutinin
Hemagglutinins, Viral
mice
Show More
Related Content
More details
DOI :
Article number:
Affiliations:
Database:
Scopus
Publication Type:
article
;
.
Language:
English
Editors' remarks:
ID:
29149
Last updated date:
02/03/2022 17:27
Creation date:
17/04/2018 00:44
You may also be interested in
Scientific Publication
Fusion of membrane vesicles bearing only the influenza hemagglutinin with erythrocytes, living cultured cells, and liposomes
262
Lapidot, M., Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
Nussbaum, O., Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
Loyter, A., Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
Fusion of membrane vesicles bearing only the influenza hemagglutinin with erythrocytes, living cultured cells, and liposomes
Membrane vesicles, bearing only the influenza viral hemagglutinin glycoprotein, were reconstituted following solubilization of intact virions with Triton X-100. The viral hemagglutinin glycoprotein was separated from the neuraminidase glycoprotein by agarose sulfanilic acid column. The hemagglutinin glycoprotein obtained was homogenous in gel electrophoresis and devoid of any neuraminidase activity. A quantitative determination revealed that the hemolytic activity of the hemagglutinin vesicles was comparable to that of intact virions. Incubation of fluorescently labeled hemagglutinin vesicles with human erythrocyte ghosts (HEG) or with liposomes composed of phosphatidylcholine/cholesterol or phosphatidylcholine/cholesterol/gangliosides, at pH 5.0 but not at pH 7.4, resulted in fluorescence dequenching. Very little, if any, fluorescence dequenching was observed upon incubation of fluorescently labeled HA vesicles with neuraminidase or glutaraldehyde-treated HEG or with liposomes composed only of phosphatidylcholine. Hemagglutinin vesicles were rendered non-hemolytic by treatment with NH2OH or glutaraldehyde or by incubation at 85 °C or low pH. No fluorescence dequenching was observed following incubation of non-hemolytic hemagglutinin vesicles with HEG or liposomes. These results clearly suggest that the fluorescence dequenching observed is due to fusion between the hemagglutinin vesicles and the recipient membranes. Incubation of hemagglutinin vesicles with living cultured cells, i.e. mouse lymphoma S-49 cells, at pH 5.0 as well as at pH 7.4, also resulted in fluorescence dequenching. The fluorescence dequenching observed at pH 7.4 was inhibited by lysosomotropic agents (methylamine and ammonium chloride) as well as by EDTA and NaN3, indicating that it is due to fusion of hemagglutinin vesicles taken into the cells by endocytosis.
Scientific Publication
You may also be interested in