נגישות
menu      
Advanced Search
Syntax
Search...
Volcani treasures
About
Terms of use
Manage
Community:
אסיף מאגר המחקר החקלאי
Powered by ClearMash Solutions Ltd -
Antimicrobial coatings on polyethylene terephthalate based on curcumin/cyclodextrin complex embedded in a multilayer polyelectrolyte architecture
Year:
2018
Authors :
Droby, Samir
;
.
Rodov, Victor
;
.
Shlar, Ilya
;
.
Volume :
164
Co-Authors:
Facilitators :
From page:
379
To page:
387
(
Total pages:
9
)
Abstract:

Bacterial contamination is a growing concern worldwide. The aim of this work was to develop an antimicrobial coating based on curcumin-cyclodextrin inclusion complex and using polyethylene terephthalate (PET) film as a support matrix. After a pre-treatment aimed to provide sufficient electric charge to the PET surface, it was electrostatically coated with repeated multilayers comprising alternately deposited positively-charged poly-l-lysine (PLL) and negatively-charged poly-l-glutamic acid (PLGA) and carboxymethyl-β-cyclodextrin (CMBCD). The coatings had an architecture (PLL-PLGA)6-(PLL-PLGA-PLL-CMBCD)n, with the number of repeated multilayers n varying from 5 to 20. The CMBCD molecules were either covalently cross-linked using carbodiimide crosslinker chemistry or left unbound. The surface morphology, structure and elemental composition of the coatings were analysed by scanning electron microscopy and energy dispersive x-ray spectroscopy. To impart antimicrobial properties to the coatings they were loaded with a natural phenolic compound curcumin forming inclusion complexes with β-cyclodextrin. The non-cross-linked coatings showed bactericidal activity towards Escherichia coli in the dark, and this activity was further enhanced upon illumination with white light. Curcumin was released from the non-cross-linked coatings into an aqueous medium in the form of cyclodextrin inclusion complex. After the cross-linking, the coating lost its dark antimicrobial activity but retained the photodynamic properties. Stabilized cross-linked curcumin-loaded coatings can serve a basis for developing photoactivated antimicrobial surfaces controlling bacterial contamination and spread.

Note:
Related Files :
Amino Acids
Crosslinking
curcumin
Cyclodextrins
Escherichia coli
microorganisms
Multilayers
Show More
Related Content
More details
DOI :
https://doi.org/10.1016/j.colsurfb.2018.02.008
Article number:
0
Affiliations:
Database:
SciFinder
Publication Type:
article
;
.
Language:
English
Editors' remarks:
ID:
36147
Last updated date:
02/03/2022 17:27
Creation date:
01/08/2018 13:23
You may also be interested in
Scientific Publication
Antimicrobial coatings on polyethylene terephthalate based on curcumin/cyclodextrin complex embedded in a multilayer polyelectrolyte architecture
164
Antimicrobial coatings on polyethylene terephthalate based on curcumin/cyclodextrin complex embedded in a multilayer polyelectrolyte architecture

Bacterial contamination is a growing concern worldwide. The aim of this work was to develop an antimicrobial coating based on curcumin-cyclodextrin inclusion complex and using polyethylene terephthalate (PET) film as a support matrix. After a pre-treatment aimed to provide sufficient electric charge to the PET surface, it was electrostatically coated with repeated multilayers comprising alternately deposited positively-charged poly-l-lysine (PLL) and negatively-charged poly-l-glutamic acid (PLGA) and carboxymethyl-β-cyclodextrin (CMBCD). The coatings had an architecture (PLL-PLGA)6-(PLL-PLGA-PLL-CMBCD)n, with the number of repeated multilayers n varying from 5 to 20. The CMBCD molecules were either covalently cross-linked using carbodiimide crosslinker chemistry or left unbound. The surface morphology, structure and elemental composition of the coatings were analysed by scanning electron microscopy and energy dispersive x-ray spectroscopy. To impart antimicrobial properties to the coatings they were loaded with a natural phenolic compound curcumin forming inclusion complexes with β-cyclodextrin. The non-cross-linked coatings showed bactericidal activity towards Escherichia coli in the dark, and this activity was further enhanced upon illumination with white light. Curcumin was released from the non-cross-linked coatings into an aqueous medium in the form of cyclodextrin inclusion complex. After the cross-linking, the coating lost its dark antimicrobial activity but retained the photodynamic properties. Stabilized cross-linked curcumin-loaded coatings can serve a basis for developing photoactivated antimicrobial surfaces controlling bacterial contamination and spread.

Scientific Publication
You may also be interested in