Several fungi, including plant pathogens and endophytes, produce secondary metabolites with biological activity traits (e.g. antibiotics, insecticides, and mycotoxins). Mycotoxins can cause severe intoxication of livestock and humans who consume food that is contaminated. Over 350 mycotoxins which may impact food safety, have been recognized, and probably many more exist. Awareness of the significant impacts of mycotoxins on animal and human health has led to the development of analytical methods for their identification and surveillance in food and feed. The wide range of crops, commodities and agricultural systems in which mycotoxins can be found, presents a challenge for effective analyses. The reliability of quantitative analysis depends on careful execution of all component steps from sampling through the extraction and cleanup. Traditional methods, such as chromatography, together with new and improved ones, can meet these needs. Sophisticated UHPLC–MS/MS technologies are currently the cutting-edge methodology for simultaneous multi-mycotoxin analysis in a wide range of matrices. A combination of the cutting-edge technology with effective sample preparation, can provide robust and practical answers for mycotoxin detection. On the other hand, rapid, field deployable methods (such as dipsticks and biosensors) are significantly less expensive while still providing acceptable accuracy. These techniques can be applied and adapted for the specific requirements of biosecurity. The likelihood of discovery of yet-unknown mycotoxins, and the specific context of biosecurity, calls for additional improved technologies for rapid and robust analysis.
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 8)
Several fungi, including plant pathogens and endophytes, produce secondary metabolites with biological activity traits (e.g. antibiotics, insecticides, and mycotoxins). Mycotoxins can cause severe intoxication of livestock and humans who consume food that is contaminated. Over 350 mycotoxins which may impact food safety, have been recognized, and probably many more exist. Awareness of the significant impacts of mycotoxins on animal and human health has led to the development of analytical methods for their identification and surveillance in food and feed. The wide range of crops, commodities and agricultural systems in which mycotoxins can be found, presents a challenge for effective analyses. The reliability of quantitative analysis depends on careful execution of all component steps from sampling through the extraction and cleanup. Traditional methods, such as chromatography, together with new and improved ones, can meet these needs. Sophisticated UHPLC–MS/MS technologies are currently the cutting-edge methodology for simultaneous multi-mycotoxin analysis in a wide range of matrices. A combination of the cutting-edge technology with effective sample preparation, can provide robust and practical answers for mycotoxin detection. On the other hand, rapid, field deployable methods (such as dipsticks and biosensors) are significantly less expensive while still providing acceptable accuracy. These techniques can be applied and adapted for the specific requirements of biosecurity. The likelihood of discovery of yet-unknown mycotoxins, and the specific context of biosecurity, calls for additional improved technologies for rapid and robust analysis.
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 8)