Advanced Search
Environmental Microbiology

Bucher, T.; Keren‐Paz, A.; Hausser, J.; Olender, T. ; Kolodkin‐Gal, I.

A hallmark of the Gram‐positive bacteria, such as the soil‐dwelling bacterium Bacillus subtilis, is their cell wall. Here, we report that d‐leucine and flavomycin, biofilm inhibitors targeting the cell wall, activate the β‐lactamase PenP. This β‐lactamase contributes to ampicillin resistance in B. subtilis under all conditions tested. In contrast, both Spo0A, a master regulator of nutritional stress, and the general cell wall stress response, differentially contribute to β‐lactam resistance under different conditions. To test whether β‐lactam resistance and β‐lactamase genes are widespread in other Bacilli, we isolated Bacillus species from undisturbed soils, and found that their genomes can encode up to five β‐lactamases with differentiated activity spectra. Surprisingly, the activity of environmental β‐lactamases and PenP, as well as the general stress response, resulted in a similarly reduced lag phase of the culture in the presence of β‐lactam antibiotics, with little or no impact on the logarithmic growth rate. The length of the lag phase may determine the outcome of the competition between β‐lactams and β‐lactamases producers. Overall, our work suggests that antibiotic resistance genes in B. subtilis and related species are ancient and widespread, and could be selected by interspecies competition in undisturbed soils.

Powered by ClearMash Solutions Ltd -
Volcani treasures
About
Terms of use
An active β‐lactamase is a part of an orchestrated cell wall stress resistance network of Bacillus subtilis and related rhizosphere species
21

Bucher, T.; Keren‐Paz, A.; Hausser, J.; Olender, T. ; Kolodkin‐Gal, I.

An active β‐lactamase is a part of an orchestrated cell wall stress resistance network of Bacillus subtilis and related rhizosphere species

A hallmark of the Gram‐positive bacteria, such as the soil‐dwelling bacterium Bacillus subtilis, is their cell wall. Here, we report that d‐leucine and flavomycin, biofilm inhibitors targeting the cell wall, activate the β‐lactamase PenP. This β‐lactamase contributes to ampicillin resistance in B. subtilis under all conditions tested. In contrast, both Spo0A, a master regulator of nutritional stress, and the general cell wall stress response, differentially contribute to β‐lactam resistance under different conditions. To test whether β‐lactam resistance and β‐lactamase genes are widespread in other Bacilli, we isolated Bacillus species from undisturbed soils, and found that their genomes can encode up to five β‐lactamases with differentiated activity spectra. Surprisingly, the activity of environmental β‐lactamases and PenP, as well as the general stress response, resulted in a similarly reduced lag phase of the culture in the presence of β‐lactam antibiotics, with little or no impact on the logarithmic growth rate. The length of the lag phase may determine the outcome of the competition between β‐lactams and β‐lactamases producers. Overall, our work suggests that antibiotic resistance genes in B. subtilis and related species are ancient and widespread, and could be selected by interspecies competition in undisturbed soils.

Scientific Publication
You may also be interested in