Advanced Search
Journal of Pest Science

Roditakis, E., Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization – Demeter, Heraklion, 71307, Greece;
Nauen, R., Crop Science Division R &D - Pest Control, Bayer AG, Monheim, 40789, Germany;

The sweet potato (cotton) whitefly Bemisia tabaci is a major agricultural pest in various fields and vegetable crops worldwide. It causes extensive damage by direct feeding on plants, reducing quality, secreting honeydew and transmitting plant viruses. B. tabaci is known for its genetic diversity and considered a complex of biotypes or, as suggested, a complex of distinct cryptic species. Management of whiteflies relies mainly on the use of insecticides; however, its ability to develop resistance to major insecticide classes creates a serious challenge to farmers and pest control specialists. Among the cryptic species of B. tabaci, MED is considered more resistant than the MEAM1 to insecticides such as pyriproxyfen and neonicotinoids; however, in recent years there are other species of B. tabaci including MEAM1, Asia I and Asia II-1 that have developed high resistance to various groups of insecticides. Advanced methods based on molecular and gene sequence data obtained from resistant and susceptible field-collected B. tabaci populations resulted in a better understanding of resistance mechanisms in this pest. Several components of IPM-IRM (Integrated Pest Management-Insecticide Resistance Management) programs such as selective and biorational insecticides, insecticide rotation with different modes of action and nonchemical control methods are among the countermeasures of insecticide resistance management for this pest. In the current review, we concentrate on insecticide resistance and resistance management of B. tabaci, focusing on reports published mainly over the past 10 years. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

Powered by ClearMash Solutions Ltd -
Volcani treasures
About
Terms of use
Insecticide resistance and its management in Bemisia tabaci species
93

Roditakis, E., Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization – Demeter, Heraklion, 71307, Greece;
Nauen, R., Crop Science Division R &D - Pest Control, Bayer AG, Monheim, 40789, Germany;

Insecticide resistance and its management in Bemisia tabaci species

The sweet potato (cotton) whitefly Bemisia tabaci is a major agricultural pest in various fields and vegetable crops worldwide. It causes extensive damage by direct feeding on plants, reducing quality, secreting honeydew and transmitting plant viruses. B. tabaci is known for its genetic diversity and considered a complex of biotypes or, as suggested, a complex of distinct cryptic species. Management of whiteflies relies mainly on the use of insecticides; however, its ability to develop resistance to major insecticide classes creates a serious challenge to farmers and pest control specialists. Among the cryptic species of B. tabaci, MED is considered more resistant than the MEAM1 to insecticides such as pyriproxyfen and neonicotinoids; however, in recent years there are other species of B. tabaci including MEAM1, Asia I and Asia II-1 that have developed high resistance to various groups of insecticides. Advanced methods based on molecular and gene sequence data obtained from resistant and susceptible field-collected B. tabaci populations resulted in a better understanding of resistance mechanisms in this pest. Several components of IPM-IRM (Integrated Pest Management-Insecticide Resistance Management) programs such as selective and biorational insecticides, insecticide rotation with different modes of action and nonchemical control methods are among the countermeasures of insecticide resistance management for this pest. In the current review, we concentrate on insecticide resistance and resistance management of B. tabaci, focusing on reports published mainly over the past 10 years. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

Scientific Publication
You may also be interested in